Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012971387> ?p ?o ?g. }
- W2012971387 endingPage "1642" @default.
- W2012971387 startingPage "1630" @default.
- W2012971387 abstract "An essential feature of all practical de novo molecule generating programs is the ability to focus the potential combinatorial explosion of grown molecules on a desired chemical space. It is a daunting task to balance the generation of new molecules with limitations on growth that produce desired features such as stability in water, synthetic accessibility, or drug-likeness. We have developed an algorithm, Fragment Optimized Growth (FOG), which statistically biases the growth of molecules with desired features. At the heart of the algorithm is a Markov Chain which adds fragments to the nascent molecule in a biased manner, depending on the frequency of specific fragment-fragment connections in the database of chemicals it was trained on. We show that in addition to generating synthetically feasible molecules, it can be trained to grow new molecules that resemble desired classes of molecules such as drugs, natural products, and diversity-oriented synthetic products. In order to classify our grown molecules, we developed the Topology Classifier (TopClass) algorithm that is capable of classifying compounds, for example as drugs or nondrugs. The classification accuracies obtained with TopClass compare favorably with the literature. Furthermore, in contrast to black-box approaches such as Neural Networks, TopClass brings to light characteristics of drugs that distinguish them from nondrugs." @default.
- W2012971387 created "2016-06-24" @default.
- W2012971387 creator A5027055362 @default.
- W2012971387 creator A5077413688 @default.
- W2012971387 creator A5082765817 @default.
- W2012971387 date "2009-06-15" @default.
- W2012971387 modified "2023-10-14" @default.
- W2012971387 title "FOG: Fragment Optimized Growth Algorithm for the <i>de Novo</i> Generation of Molecules Occupying Druglike Chemical Space" @default.
- W2012971387 cites W1009610150 @default.
- W2012971387 cites W141077900 @default.
- W2012971387 cites W1499370055 @default.
- W2012971387 cites W1509196567 @default.
- W2012971387 cites W1563020763 @default.
- W2012971387 cites W1592238003 @default.
- W2012971387 cites W1964183799 @default.
- W2012971387 cites W1965207004 @default.
- W2012971387 cites W1966591656 @default.
- W2012971387 cites W1968997369 @default.
- W2012971387 cites W1969231756 @default.
- W2012971387 cites W1969559577 @default.
- W2012971387 cites W1969899428 @default.
- W2012971387 cites W1972895750 @default.
- W2012971387 cites W1975147762 @default.
- W2012971387 cites W1980367376 @default.
- W2012971387 cites W1984392972 @default.
- W2012971387 cites W1986176168 @default.
- W2012971387 cites W1994859764 @default.
- W2012971387 cites W1996082557 @default.
- W2012971387 cites W1997388207 @default.
- W2012971387 cites W1998532396 @default.
- W2012971387 cites W2005671628 @default.
- W2012971387 cites W2007365648 @default.
- W2012971387 cites W2009299989 @default.
- W2012971387 cites W2010595835 @default.
- W2012971387 cites W2011230643 @default.
- W2012971387 cites W2017254234 @default.
- W2012971387 cites W2024267873 @default.
- W2012971387 cites W2025401613 @default.
- W2012971387 cites W2026434519 @default.
- W2012971387 cites W2028324792 @default.
- W2012971387 cites W2030033516 @default.
- W2012971387 cites W2038617772 @default.
- W2012971387 cites W2039887700 @default.
- W2012971387 cites W2041686943 @default.
- W2012971387 cites W2046564413 @default.
- W2012971387 cites W2047819524 @default.
- W2012971387 cites W2054886599 @default.
- W2012971387 cites W2064514012 @default.
- W2012971387 cites W2066559205 @default.
- W2012971387 cites W2073627214 @default.
- W2012971387 cites W2078521274 @default.
- W2012971387 cites W2080245527 @default.
- W2012971387 cites W2085645854 @default.
- W2012971387 cites W2091921323 @default.
- W2012971387 cites W2094125466 @default.
- W2012971387 cites W2094661318 @default.
- W2012971387 cites W2096176176 @default.
- W2012971387 cites W2105649494 @default.
- W2012971387 cites W2105828658 @default.
- W2012971387 cites W2114151826 @default.
- W2012971387 cites W2114350971 @default.
- W2012971387 cites W2117996566 @default.
- W2012971387 cites W2122577731 @default.
- W2012971387 cites W2133321875 @default.
- W2012971387 cites W2145325304 @default.
- W2012971387 cites W2146984355 @default.
- W2012971387 cites W2151356831 @default.
- W2012971387 cites W2171787690 @default.
- W2012971387 cites W2206840988 @default.
- W2012971387 cites W2207701801 @default.
- W2012971387 cites W2210461865 @default.
- W2012971387 cites W2286951030 @default.
- W2012971387 cites W2313931242 @default.
- W2012971387 cites W2949837924 @default.
- W2012971387 cites W2950633519 @default.
- W2012971387 cites W2951049643 @default.
- W2012971387 cites W2951796090 @default.
- W2012971387 cites W4248107770 @default.
- W2012971387 doi "https://doi.org/10.1021/ci9000458" @default.
- W2012971387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19527020" @default.
- W2012971387 hasPublicationYear "2009" @default.
- W2012971387 type Work @default.
- W2012971387 sameAs 2012971387 @default.
- W2012971387 citedByCount "54" @default.
- W2012971387 countsByYear W20129713872012 @default.
- W2012971387 countsByYear W20129713872013 @default.
- W2012971387 countsByYear W20129713872014 @default.
- W2012971387 countsByYear W20129713872015 @default.
- W2012971387 countsByYear W20129713872016 @default.
- W2012971387 countsByYear W20129713872017 @default.
- W2012971387 countsByYear W20129713872018 @default.
- W2012971387 countsByYear W20129713872019 @default.
- W2012971387 countsByYear W20129713872020 @default.
- W2012971387 countsByYear W20129713872021 @default.
- W2012971387 countsByYear W20129713872023 @default.
- W2012971387 crossrefType "journal-article" @default.
- W2012971387 hasAuthorship W2012971387A5027055362 @default.
- W2012971387 hasAuthorship W2012971387A5077413688 @default.