Matches in SemOpenAlex for { <https://semopenalex.org/work/W2012976027> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2012976027 abstract "Automatic target and anomaly detection are considered very important tasks for hyperspectral data exploitation. These techniques are now routinely applied in many application domains, including defence and intelligence, public safety, precision agriculture, geology, or forestry. Many of these applications require timely responses for swift decisions which depend upon high computing performance of algorithm analysis. However, with the recent explosion in the amount and dimensionality of hyperspectral imagery, this problem calls for the incorporation of parallel computing techniques. In the past, clusters of computers have offered an attractive solution for fast anomaly and target detection in hyperspectral data sets already transmitted to Earth. However, these systems are expensive and difficult to adapt to on-board data processing scenarios, in which low-weight and low-power integrated components are essential to reduce mission payload and obtain analysis results in (near) real-time, i.e., at the same time as the data is collected by the sensor. An exciting new development in the field of commodity computing is the emergence of commodity graphics processing units (GPUs), which can now bridge the gap towards on-board processing of remotely sensed hyperspectral data. In this paper, we describe several new GPU-based implementations of target and anomaly detection algorithms for hyperspectral data exploitation. The parallel algorithms are implemented on latest-generation Tesla C1060 GPU architectures, and quantitatively evaluated using hyperspectral data collected by NASA's AVIRIS system over the World Trade Center (WTC) in New York, five days after the terrorist attacks that collapsed the two main towers in the WTC complex." @default.
- W2012976027 created "2016-06-24" @default.
- W2012976027 creator A5001411931 @default.
- W2012976027 creator A5054292278 @default.
- W2012976027 date "2010-08-19" @default.
- W2012976027 modified "2023-09-23" @default.
- W2012976027 title "GPU implementation of target and anomaly detection algorithms for remotely sensed hyperspectral image analysis" @default.
- W2012976027 cites W1532610010 @default.
- W2012976027 cites W2006541223 @default.
- W2012976027 cites W2022470997 @default.
- W2012976027 cites W2047870694 @default.
- W2012976027 cites W2061974905 @default.
- W2012976027 cites W2068278717 @default.
- W2012976027 cites W2111975408 @default.
- W2012976027 cites W2114445866 @default.
- W2012976027 cites W2117741752 @default.
- W2012976027 cites W2118996198 @default.
- W2012976027 cites W2140876153 @default.
- W2012976027 cites W2163547919 @default.
- W2012976027 cites W2165755981 @default.
- W2012976027 doi "https://doi.org/10.1117/12.860213" @default.
- W2012976027 hasPublicationYear "2010" @default.
- W2012976027 type Work @default.
- W2012976027 sameAs 2012976027 @default.
- W2012976027 citedByCount "18" @default.
- W2012976027 countsByYear W20129760272012 @default.
- W2012976027 countsByYear W20129760272013 @default.
- W2012976027 countsByYear W20129760272015 @default.
- W2012976027 countsByYear W20129760272016 @default.
- W2012976027 countsByYear W20129760272017 @default.
- W2012976027 countsByYear W20129760272018 @default.
- W2012976027 countsByYear W20129760272023 @default.
- W2012976027 crossrefType "proceedings-article" @default.
- W2012976027 hasAuthorship W2012976027A5001411931 @default.
- W2012976027 hasAuthorship W2012976027A5054292278 @default.
- W2012976027 hasConcept C121332964 @default.
- W2012976027 hasConcept C134066672 @default.
- W2012976027 hasConcept C138827492 @default.
- W2012976027 hasConcept C154945302 @default.
- W2012976027 hasConcept C158379750 @default.
- W2012976027 hasConcept C159078339 @default.
- W2012976027 hasConcept C183852935 @default.
- W2012976027 hasConcept C31258907 @default.
- W2012976027 hasConcept C33390570 @default.
- W2012976027 hasConcept C41008148 @default.
- W2012976027 hasConcept C62520636 @default.
- W2012976027 hasConcept C739882 @default.
- W2012976027 hasConcept C77088390 @default.
- W2012976027 hasConcept C79403827 @default.
- W2012976027 hasConceptScore W2012976027C121332964 @default.
- W2012976027 hasConceptScore W2012976027C134066672 @default.
- W2012976027 hasConceptScore W2012976027C138827492 @default.
- W2012976027 hasConceptScore W2012976027C154945302 @default.
- W2012976027 hasConceptScore W2012976027C158379750 @default.
- W2012976027 hasConceptScore W2012976027C159078339 @default.
- W2012976027 hasConceptScore W2012976027C183852935 @default.
- W2012976027 hasConceptScore W2012976027C31258907 @default.
- W2012976027 hasConceptScore W2012976027C33390570 @default.
- W2012976027 hasConceptScore W2012976027C41008148 @default.
- W2012976027 hasConceptScore W2012976027C62520636 @default.
- W2012976027 hasConceptScore W2012976027C739882 @default.
- W2012976027 hasConceptScore W2012976027C77088390 @default.
- W2012976027 hasConceptScore W2012976027C79403827 @default.
- W2012976027 hasLocation W20129760271 @default.
- W2012976027 hasOpenAccess W2012976027 @default.
- W2012976027 hasPrimaryLocation W20129760271 @default.
- W2012976027 hasRelatedWork W1984667019 @default.
- W2012976027 hasRelatedWork W1990038046 @default.
- W2012976027 hasRelatedWork W2000725643 @default.
- W2012976027 hasRelatedWork W2033638991 @default.
- W2012976027 hasRelatedWork W2067905166 @default.
- W2012976027 hasRelatedWork W2082586825 @default.
- W2012976027 hasRelatedWork W2110890874 @default.
- W2012976027 hasRelatedWork W2111879521 @default.
- W2012976027 hasRelatedWork W2170339676 @default.
- W2012976027 hasRelatedWork W2884757517 @default.
- W2012976027 isParatext "false" @default.
- W2012976027 isRetracted "false" @default.
- W2012976027 magId "2012976027" @default.
- W2012976027 workType "article" @default.