Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013062964> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2013062964 endingPage "20" @default.
- W2013062964 startingPage "1" @default.
- W2013062964 abstract "With the popularity of photo-sharing websites, the number of web images has exploded into unseen magnitude. Annotating such large-scale data will cost huge amount of human resources and is thus unaffordable. Motivated by this challenging problem, we propose a novel sparse graph based multilabel propagation (SGMP) scheme for super large scale datasets. Both the efficacy and accuracy of the image annotation are further investigated under different graph construction strategies, where Gaussian noise and non-Gaussian sparse noise are simultaneously considered in the formulations of these strategies. Our proposed approach outperforms the state-of-the-art algorithms by focusing on: (1) For large-scale graph construction, a simple yet efficient LSH ( Locality Sensitive Hashing )-based sparse graph construction scheme is proposed to speed up the construction. We perform the multilabel propagation on this hashing-based graph construction, which is derived with LSH approach followed by sparse graph construction within the individual hashing buckets; (2) To further improve the accuracy, we propose a novel sparsity induced scalable graph construction scheme, which is based on a general sparse optimization framework. Sparsity essentially implies a very strong prior: for large scale optimization, the values of most variables shall be zeros when the solution reaches the optimum. By utilizing this prior, the solutions of large-scale sparse optimization problems can be derived by solving a series of much smaller scale subproblems; (3) For multilabel propagation, different from the traditional algorithms that propagate over individual label independently, our proposed propagation first encodes the label information of an image as a unit label confidence vector and naturally imposes inter-label constraints and manipulates labels interactively. Then, the entire propagation problem is formulated on the concept of Kullback-Leibler divergence defined on probabilistic distributions, which guides the propagation of the supervision information. Extensive experiments on the benchmark dataset NUS-WIDE with 270k images and its lite version NUS-WIDE-LITE with 56k images well demonstrate the effectiveness and scalability of the proposed multi-label propagation scheme." @default.
- W2013062964 created "2016-06-24" @default.
- W2013062964 creator A5014934585 @default.
- W2013062964 creator A5028877572 @default.
- W2013062964 creator A5039765869 @default.
- W2013062964 creator A5063235838 @default.
- W2013062964 creator A5089361846 @default.
- W2013062964 creator A5089404640 @default.
- W2013062964 date "2013-12-01" @default.
- W2013062964 modified "2023-09-23" @default.
- W2013062964 title "Large-scale multilabel propagation based on efficient sparse graph construction" @default.
- W2013062964 cites W1503425191 @default.
- W2013062964 cites W1904464160 @default.
- W2013062964 cites W197827279 @default.
- W2013062964 cites W1983599491 @default.
- W2013062964 cites W2007972815 @default.
- W2013062964 cites W2009702064 @default.
- W2013062964 cites W2012833704 @default.
- W2013062964 cites W2038276547 @default.
- W2013062964 cites W2038967169 @default.
- W2013062964 cites W2048997552 @default.
- W2013062964 cites W2053186076 @default.
- W2013062964 cites W2070959357 @default.
- W2013062964 cites W2072286734 @default.
- W2013062964 cites W2078204800 @default.
- W2013062964 cites W2083042020 @default.
- W2013062964 cites W2099111195 @default.
- W2013062964 cites W2100556411 @default.
- W2013062964 cites W2127230571 @default.
- W2013062964 cites W2128097790 @default.
- W2013062964 cites W2138388365 @default.
- W2013062964 cites W2143854982 @default.
- W2013062964 cites W2147717514 @default.
- W2013062964 cites W2162006472 @default.
- W2013062964 cites W4250589301 @default.
- W2013062964 cites W3005100505 @default.
- W2013062964 doi "https://doi.org/10.1145/2542205.2542209" @default.
- W2013062964 hasPublicationYear "2013" @default.
- W2013062964 type Work @default.
- W2013062964 sameAs 2013062964 @default.
- W2013062964 citedByCount "7" @default.
- W2013062964 countsByYear W20130629642014 @default.
- W2013062964 countsByYear W20130629642015 @default.
- W2013062964 countsByYear W20130629642016 @default.
- W2013062964 countsByYear W20130629642019 @default.
- W2013062964 crossrefType "journal-article" @default.
- W2013062964 hasAuthorship W2013062964A5014934585 @default.
- W2013062964 hasAuthorship W2013062964A5028877572 @default.
- W2013062964 hasAuthorship W2013062964A5039765869 @default.
- W2013062964 hasAuthorship W2013062964A5063235838 @default.
- W2013062964 hasAuthorship W2013062964A5089361846 @default.
- W2013062964 hasAuthorship W2013062964A5089404640 @default.
- W2013062964 hasBestOaLocation W20130629641 @default.
- W2013062964 hasConcept C11413529 @default.
- W2013062964 hasConcept C124066611 @default.
- W2013062964 hasConcept C132525143 @default.
- W2013062964 hasConcept C154945302 @default.
- W2013062964 hasConcept C38652104 @default.
- W2013062964 hasConcept C41008148 @default.
- W2013062964 hasConcept C48044578 @default.
- W2013062964 hasConcept C67388219 @default.
- W2013062964 hasConcept C74270461 @default.
- W2013062964 hasConcept C77088390 @default.
- W2013062964 hasConcept C80444323 @default.
- W2013062964 hasConcept C99138194 @default.
- W2013062964 hasConceptScore W2013062964C11413529 @default.
- W2013062964 hasConceptScore W2013062964C124066611 @default.
- W2013062964 hasConceptScore W2013062964C132525143 @default.
- W2013062964 hasConceptScore W2013062964C154945302 @default.
- W2013062964 hasConceptScore W2013062964C38652104 @default.
- W2013062964 hasConceptScore W2013062964C41008148 @default.
- W2013062964 hasConceptScore W2013062964C48044578 @default.
- W2013062964 hasConceptScore W2013062964C67388219 @default.
- W2013062964 hasConceptScore W2013062964C74270461 @default.
- W2013062964 hasConceptScore W2013062964C77088390 @default.
- W2013062964 hasConceptScore W2013062964C80444323 @default.
- W2013062964 hasConceptScore W2013062964C99138194 @default.
- W2013062964 hasFunder F4320320749 @default.
- W2013062964 hasIssue "1" @default.
- W2013062964 hasLocation W20130629641 @default.
- W2013062964 hasOpenAccess W2013062964 @default.
- W2013062964 hasPrimaryLocation W20130629641 @default.
- W2013062964 hasRelatedWork W1870428314 @default.
- W2013062964 hasRelatedWork W2026551508 @default.
- W2013062964 hasRelatedWork W2034963017 @default.
- W2013062964 hasRelatedWork W2083065074 @default.
- W2013062964 hasRelatedWork W2262209414 @default.
- W2013062964 hasRelatedWork W2388078788 @default.
- W2013062964 hasRelatedWork W2390485179 @default.
- W2013062964 hasRelatedWork W2734503711 @default.
- W2013062964 hasRelatedWork W2766375145 @default.
- W2013062964 hasRelatedWork W2802667927 @default.
- W2013062964 hasVolume "10" @default.
- W2013062964 isParatext "false" @default.
- W2013062964 isRetracted "false" @default.
- W2013062964 magId "2013062964" @default.
- W2013062964 workType "article" @default.