Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013066070> ?p ?o ?g. }
- W2013066070 endingPage "240" @default.
- W2013066070 startingPage "231" @default.
- W2013066070 abstract "Plate boundary geometry likely has an important influence on crustal production at mid-ocean ridges. Many studies have explored the effects of geometrical features such as transform offsets and oblique ridge segments on mantle flow and melting. This study investigates how triple junction (TJ) geometry may influence mantle dynamics. An earlier study [Georgen, J.E., Lin, J., 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions. Earth Planet. Sci. Lett. 204, 115–132.] suggested that the effects of a ridge–ridge–ridge configuration are most pronounced under the branch with the slowest spreading rate. Thus, we create a three-dimensional, finite element, variable viscosity model that focuses on the slowest-diverging ridge of a triple junction with geometry similar to the Rodrigues TJ. This spreading axis may be considered to be analogous to the Southwest Indian Ridge. Within 100 km of the TJ, temperatures at depths within the partial melting zone and crustal thickness are predicted to increase by ~ 40 °C and 1 km, respectively. We also investigate the effects of differential motion of the TJ with respect to the underlying mantle, by imposing bottom model boundary conditions replicating (a) absolute plate motion and (b) a three-dimensional solution for plate-driven and density-driven asthenospheric flow in the African region. Neither of these basal boundary conditions significantly affects the model solutions, suggesting that the system is dominated by the divergence of the surface places. Finally, we explore how varying spreading rate magnitudes affects TJ geodynamics. When ridge divergence rates are all relatively slow (i.e., with plate kinematics similar to the Azores TJ), significant along-axis increases in mantle temperature and crustal thickness are calculated. At depths within the partial melting zone, temperatures are predicted to increase by ~ 150 °C, similar to the excess temperatures associated with mantle plumes. Likewise, crustal thickness is calculated to increase by approximately 6 km over the 200 km of ridge closest to the TJ. These results could imply that some component of the excess volcanism observed in geologic settings such as the Terceira Rift may be attributed to the effects of TJ geometry, although the important influence of features like nearby hotspots (e.g., the Azores hotspot) cannot be evaluated without additional numerical modeling." @default.
- W2013066070 created "2016-06-24" @default.
- W2013066070 creator A5051561525 @default.
- W2013066070 date "2008-06-01" @default.
- W2013066070 modified "2023-10-14" @default.
- W2013066070 title "Mantle flow and melting beneath oceanic ridge–ridge–ridge triple junctions" @default.
- W2013066070 cites W1536958615 @default.
- W2013066070 cites W1744428698 @default.
- W2013066070 cites W1797474024 @default.
- W2013066070 cites W1821593081 @default.
- W2013066070 cites W194469748 @default.
- W2013066070 cites W1967405776 @default.
- W2013066070 cites W1968426779 @default.
- W2013066070 cites W1969093313 @default.
- W2013066070 cites W1970959873 @default.
- W2013066070 cites W1970982558 @default.
- W2013066070 cites W1980362900 @default.
- W2013066070 cites W1981094693 @default.
- W2013066070 cites W1982300088 @default.
- W2013066070 cites W1987243508 @default.
- W2013066070 cites W1987417955 @default.
- W2013066070 cites W1990740187 @default.
- W2013066070 cites W1991924753 @default.
- W2013066070 cites W2001327329 @default.
- W2013066070 cites W2002575557 @default.
- W2013066070 cites W2006745337 @default.
- W2013066070 cites W2007868664 @default.
- W2013066070 cites W2008765384 @default.
- W2013066070 cites W2021959819 @default.
- W2013066070 cites W2022117680 @default.
- W2013066070 cites W2024390338 @default.
- W2013066070 cites W2026661705 @default.
- W2013066070 cites W2032584964 @default.
- W2013066070 cites W2032609698 @default.
- W2013066070 cites W2040943061 @default.
- W2013066070 cites W2043939123 @default.
- W2013066070 cites W2045826394 @default.
- W2013066070 cites W2052508457 @default.
- W2013066070 cites W2054217261 @default.
- W2013066070 cites W2058747219 @default.
- W2013066070 cites W2064810841 @default.
- W2013066070 cites W2065319779 @default.
- W2013066070 cites W2068422131 @default.
- W2013066070 cites W2069172403 @default.
- W2013066070 cites W2069721356 @default.
- W2013066070 cites W2075879960 @default.
- W2013066070 cites W2076833330 @default.
- W2013066070 cites W2078292654 @default.
- W2013066070 cites W2079950853 @default.
- W2013066070 cites W2081839958 @default.
- W2013066070 cites W2082270004 @default.
- W2013066070 cites W2083884054 @default.
- W2013066070 cites W2086025314 @default.
- W2013066070 cites W2087756133 @default.
- W2013066070 cites W2088750676 @default.
- W2013066070 cites W2089509230 @default.
- W2013066070 cites W2094025567 @default.
- W2013066070 cites W2100029905 @default.
- W2013066070 cites W2109834364 @default.
- W2013066070 cites W2110523987 @default.
- W2013066070 cites W2110525812 @default.
- W2013066070 cites W2112271938 @default.
- W2013066070 cites W2114964712 @default.
- W2013066070 cites W2118437845 @default.
- W2013066070 cites W2119224258 @default.
- W2013066070 cites W2123786602 @default.
- W2013066070 cites W2135520319 @default.
- W2013066070 cites W2144909473 @default.
- W2013066070 cites W2148503641 @default.
- W2013066070 cites W2156789661 @default.
- W2013066070 cites W2157175089 @default.
- W2013066070 cites W2158140282 @default.
- W2013066070 cites W2164017927 @default.
- W2013066070 cites W2166102005 @default.
- W2013066070 cites W236674498 @default.
- W2013066070 cites W306621583 @default.
- W2013066070 cites W87625985 @default.
- W2013066070 doi "https://doi.org/10.1016/j.epsl.2008.03.040" @default.
- W2013066070 hasPublicationYear "2008" @default.
- W2013066070 type Work @default.
- W2013066070 sameAs 2013066070 @default.
- W2013066070 citedByCount "18" @default.
- W2013066070 countsByYear W20130660702012 @default.
- W2013066070 countsByYear W20130660702013 @default.
- W2013066070 countsByYear W20130660702016 @default.
- W2013066070 countsByYear W20130660702017 @default.
- W2013066070 countsByYear W20130660702018 @default.
- W2013066070 countsByYear W20130660702021 @default.
- W2013066070 countsByYear W20130660702022 @default.
- W2013066070 crossrefType "journal-article" @default.
- W2013066070 hasAuthorship W2013066070A5051561525 @default.
- W2013066070 hasConcept C119477230 @default.
- W2013066070 hasConcept C127313418 @default.
- W2013066070 hasConcept C136752280 @default.
- W2013066070 hasConcept C146481406 @default.
- W2013066070 hasConcept C151730666 @default.
- W2013066070 hasConcept C161509811 @default.
- W2013066070 hasConcept C165205528 @default.