Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013080921> ?p ?o ?g. }
- W2013080921 endingPage "745" @default.
- W2013080921 startingPage "734" @default.
- W2013080921 abstract "In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal–organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation.MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity.Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples.Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications." @default.
- W2013080921 created "2016-06-24" @default.
- W2013080921 creator A5001990602 @default.
- W2013080921 creator A5041161290 @default.
- W2013080921 creator A5086492257 @default.
- W2013080921 creator A5090486781 @default.
- W2013080921 date "2012-03-12" @default.
- W2013080921 modified "2023-10-18" @default.
- W2013080921 title "Metal–Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation" @default.
- W2013080921 cites W1970820491 @default.
- W2013080921 cites W1974600432 @default.
- W2013080921 cites W1975714912 @default.
- W2013080921 cites W1979113087 @default.
- W2013080921 cites W1987259581 @default.
- W2013080921 cites W1991259235 @default.
- W2013080921 cites W1998523963 @default.
- W2013080921 cites W1999908724 @default.
- W2013080921 cites W1999937609 @default.
- W2013080921 cites W2003790250 @default.
- W2013080921 cites W2011852015 @default.
- W2013080921 cites W2019903242 @default.
- W2013080921 cites W2022167379 @default.
- W2013080921 cites W2034373943 @default.
- W2013080921 cites W2040995684 @default.
- W2013080921 cites W2042397184 @default.
- W2013080921 cites W2058966744 @default.
- W2013080921 cites W2063113648 @default.
- W2013080921 cites W2066684267 @default.
- W2013080921 cites W2071870342 @default.
- W2013080921 cites W2072667110 @default.
- W2013080921 cites W2075577122 @default.
- W2013080921 cites W2086365969 @default.
- W2013080921 cites W2089869696 @default.
- W2013080921 cites W2093815467 @default.
- W2013080921 cites W2095123472 @default.
- W2013080921 cites W2099486431 @default.
- W2013080921 cites W2107991409 @default.
- W2013080921 cites W2112567926 @default.
- W2013080921 cites W2117773732 @default.
- W2013080921 cites W2118298691 @default.
- W2013080921 cites W2121967503 @default.
- W2013080921 cites W2155423907 @default.
- W2013080921 cites W2163087113 @default.
- W2013080921 cites W2164043498 @default.
- W2013080921 cites W2312952118 @default.
- W2013080921 cites W2316187436 @default.
- W2013080921 cites W2324064238 @default.
- W2013080921 cites W2326765258 @default.
- W2013080921 cites W2327625952 @default.
- W2013080921 cites W2331392563 @default.
- W2013080921 doi "https://doi.org/10.1021/ar2002599" @default.
- W2013080921 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22404189" @default.
- W2013080921 hasPublicationYear "2012" @default.
- W2013080921 type Work @default.
- W2013080921 sameAs 2013080921 @default.
- W2013080921 citedByCount "595" @default.
- W2013080921 countsByYear W20130809212012 @default.
- W2013080921 countsByYear W20130809212013 @default.
- W2013080921 countsByYear W20130809212014 @default.
- W2013080921 countsByYear W20130809212015 @default.
- W2013080921 countsByYear W20130809212016 @default.
- W2013080921 countsByYear W20130809212017 @default.
- W2013080921 countsByYear W20130809212018 @default.
- W2013080921 countsByYear W20130809212019 @default.
- W2013080921 countsByYear W20130809212020 @default.
- W2013080921 countsByYear W20130809212021 @default.
- W2013080921 countsByYear W20130809212022 @default.
- W2013080921 countsByYear W20130809212023 @default.
- W2013080921 crossrefType "journal-article" @default.
- W2013080921 hasAuthorship W2013080921A5001990602 @default.
- W2013080921 hasAuthorship W2013080921A5041161290 @default.
- W2013080921 hasAuthorship W2013080921A5086492257 @default.
- W2013080921 hasAuthorship W2013080921A5090486781 @default.
- W2013080921 hasConcept C118792377 @default.
- W2013080921 hasConcept C127413603 @default.
- W2013080921 hasConcept C150394285 @default.
- W2013080921 hasConcept C161790260 @default.
- W2013080921 hasConcept C162356407 @default.
- W2013080921 hasConcept C171250308 @default.
- W2013080921 hasConcept C178790620 @default.
- W2013080921 hasConcept C179366358 @default.
- W2013080921 hasConcept C185592680 @default.
- W2013080921 hasConcept C192562407 @default.
- W2013080921 hasConcept C205345274 @default.
- W2013080921 hasConcept C2778533135 @default.
- W2013080921 hasConcept C2778576202 @default.
- W2013080921 hasConcept C42360764 @default.
- W2013080921 hasConcept C43617362 @default.
- W2013080921 hasConcept C86381522 @default.
- W2013080921 hasConceptScore W2013080921C118792377 @default.
- W2013080921 hasConceptScore W2013080921C127413603 @default.
- W2013080921 hasConceptScore W2013080921C150394285 @default.
- W2013080921 hasConceptScore W2013080921C161790260 @default.
- W2013080921 hasConceptScore W2013080921C162356407 @default.
- W2013080921 hasConceptScore W2013080921C171250308 @default.
- W2013080921 hasConceptScore W2013080921C178790620 @default.
- W2013080921 hasConceptScore W2013080921C179366358 @default.
- W2013080921 hasConceptScore W2013080921C185592680 @default.