Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013092521> ?p ?o ?g. }
- W2013092521 endingPage "621" @default.
- W2013092521 startingPage "605" @default.
- W2013092521 abstract "This study uses information on composition, thermal state and petrological thickness to calculate the densities of different types of subcontinental lithospheric mantle (SCLM). Data from mantle-derived peridotite xenoliths and garnet–xenocryst suites document a secular evolution in the composition of SCLM: the mean composition of newly formed SCLM has become progressively less depleted, in terms of Al, Ca, mg# and Fe/Al, from Archean, through Proterozoic to Phanerozoic time. Thermobarometric analyses of xenolith and xenocryst suites worldwide show that the mean lithospheric palaeogeotherms rise from low values (corresponding to surface heat flows of 35–40 mW/m2) beneath Archean terranes, to higher values (>50 mW/m2) beneath regions with Phanerozoic crust. The typical thickness of the lithosphere (defined as a chemical boundary layer), ranges from about 250 to 180 km, 180–150 km and 140–60 km for Archean, Proterozoic and Phanerozoic terranes respectively. The depth of this lithosphere–asthenosphere boundary corresponds to a temperature of 1250–1300°C. Using the estimated compositions, average mineral compositions and experimental data on the densities of mineral end-members (tables 1 and 2), we calculate mean densities at 20°C for Primitive Mantle (3.39 Mg m−3) and for SCLM of Archean (3.31±.016 Mg m−3), Proterozoic (3.35±0.02 Mg m−3) and Phanerozoic (3.36±0.02 Mg m−3) age. Curves of density and cumulative density versus depth, which take into account variations in geotherm with tectonothermal age, have been constructed for each age type of lithospheric section to assess the buoyancy of these columns relative to the asthenosphere, modelled as a Primitive Mantle composition. The density curves show that Archean SCLM is significantly buoyant relative to the asthenosphere at depths greater than about 60 km. Proterozoic sections deeper than about 100 km thick also are significantly buoyant. The buoyancy of Archean and Proterozoic SCLM sections, combined with their refractory composition, leads to high viscosities and explains the longevity and stability of old SCLM. Replacement of Archean lithosphere, as beneath the present-day eastern Sino–Korean craton, probably involves mechanical dispersal by rifting, accompanied by the rise of hot, fertile asthenospheric material. Fertile Phanerozoic lithosphere is buoyant when the geotherm is sufficiently high, as in many Cenozoic volcanic provinces. However, as the geothermal gradient relaxes toward a stable conductive profile, Phanerozoic SCLM sections thinner than about 100 km become denser than the asthenosphere, and hence gravitationally unstable. This could help to induce delamination of the SCLM and upwelling of asthenospheric material, beginning a new cycle. The tectonic consequences of such lithosphere replacement would include uplift and magmatism, and basin formation during subsequent thermal relaxation." @default.
- W2013092521 created "2016-06-24" @default.
- W2013092521 creator A5020121719 @default.
- W2013092521 creator A5043328521 @default.
- W2013092521 creator A5056410545 @default.
- W2013092521 creator A5063700340 @default.
- W2013092521 date "2001-01-01" @default.
- W2013092521 modified "2023-10-18" @default.
- W2013092521 title "The density structure of subcontinental lithosphere through time" @default.
- W2013092521 cites W1492773086 @default.
- W2013092521 cites W1503482980 @default.
- W2013092521 cites W1587624588 @default.
- W2013092521 cites W1594736891 @default.
- W2013092521 cites W1964175282 @default.
- W2013092521 cites W1969859799 @default.
- W2013092521 cites W1978443535 @default.
- W2013092521 cites W1988024307 @default.
- W2013092521 cites W1990851049 @default.
- W2013092521 cites W1991182276 @default.
- W2013092521 cites W1998841391 @default.
- W2013092521 cites W1999710591 @default.
- W2013092521 cites W2002768804 @default.
- W2013092521 cites W2012177214 @default.
- W2013092521 cites W2018890533 @default.
- W2013092521 cites W2023216138 @default.
- W2013092521 cites W2027315840 @default.
- W2013092521 cites W2029384474 @default.
- W2013092521 cites W2029905237 @default.
- W2013092521 cites W2034753142 @default.
- W2013092521 cites W2044846174 @default.
- W2013092521 cites W2056207362 @default.
- W2013092521 cites W2090072357 @default.
- W2013092521 cites W2094826241 @default.
- W2013092521 cites W2106060894 @default.
- W2013092521 cites W2110535686 @default.
- W2013092521 cites W2123585974 @default.
- W2013092521 cites W2124779747 @default.
- W2013092521 cites W2125478780 @default.
- W2013092521 cites W2313009796 @default.
- W2013092521 cites W2747531652 @default.
- W2013092521 cites W2775235778 @default.
- W2013092521 cites W2924838375 @default.
- W2013092521 cites W4238839549 @default.
- W2013092521 cites W4250199232 @default.
- W2013092521 cites W4251312335 @default.
- W2013092521 cites W4252858842 @default.
- W2013092521 doi "https://doi.org/10.1016/s0012-821x(00)00362-9" @default.
- W2013092521 hasPublicationYear "2001" @default.
- W2013092521 type Work @default.
- W2013092521 sameAs 2013092521 @default.
- W2013092521 citedByCount "367" @default.
- W2013092521 countsByYear W20130925212012 @default.
- W2013092521 countsByYear W20130925212013 @default.
- W2013092521 countsByYear W20130925212014 @default.
- W2013092521 countsByYear W20130925212015 @default.
- W2013092521 countsByYear W20130925212016 @default.
- W2013092521 countsByYear W20130925212017 @default.
- W2013092521 countsByYear W20130925212018 @default.
- W2013092521 countsByYear W20130925212019 @default.
- W2013092521 countsByYear W20130925212020 @default.
- W2013092521 countsByYear W20130925212021 @default.
- W2013092521 countsByYear W20130925212022 @default.
- W2013092521 countsByYear W20130925212023 @default.
- W2013092521 crossrefType "journal-article" @default.
- W2013092521 hasAuthorship W2013092521A5020121719 @default.
- W2013092521 hasAuthorship W2013092521A5043328521 @default.
- W2013092521 hasAuthorship W2013092521A5056410545 @default.
- W2013092521 hasAuthorship W2013092521A5063700340 @default.
- W2013092521 hasConcept C109007969 @default.
- W2013092521 hasConcept C127313418 @default.
- W2013092521 hasConcept C147717901 @default.
- W2013092521 hasConcept C149347711 @default.
- W2013092521 hasConcept C150999391 @default.
- W2013092521 hasConcept C151730666 @default.
- W2013092521 hasConcept C167570900 @default.
- W2013092521 hasConcept C16942324 @default.
- W2013092521 hasConcept C17409809 @default.
- W2013092521 hasConcept C2776698055 @default.
- W2013092521 hasConcept C42796848 @default.
- W2013092521 hasConcept C67236022 @default.
- W2013092521 hasConcept C73707237 @default.
- W2013092521 hasConcept C77928131 @default.
- W2013092521 hasConcept C8058405 @default.
- W2013092521 hasConcept C84372278 @default.
- W2013092521 hasConcept C93033518 @default.
- W2013092521 hasConceptScore W2013092521C109007969 @default.
- W2013092521 hasConceptScore W2013092521C127313418 @default.
- W2013092521 hasConceptScore W2013092521C147717901 @default.
- W2013092521 hasConceptScore W2013092521C149347711 @default.
- W2013092521 hasConceptScore W2013092521C150999391 @default.
- W2013092521 hasConceptScore W2013092521C151730666 @default.
- W2013092521 hasConceptScore W2013092521C167570900 @default.
- W2013092521 hasConceptScore W2013092521C16942324 @default.
- W2013092521 hasConceptScore W2013092521C17409809 @default.
- W2013092521 hasConceptScore W2013092521C2776698055 @default.
- W2013092521 hasConceptScore W2013092521C42796848 @default.
- W2013092521 hasConceptScore W2013092521C67236022 @default.
- W2013092521 hasConceptScore W2013092521C73707237 @default.