Matches in SemOpenAlex for { <https://semopenalex.org/work/W201311944> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W201311944 endingPage "183" @default.
- W201311944 startingPage "143" @default.
- W201311944 abstract "The elliptic or Cauer approximation is a rational approximation with a general numerator and denominator and as such exhibits zeros on the jω-axis. The finite zeros render the gain equal to zero at their location, in other words they form stopband transmission zeros. The usual mathematical treatment of such filters involves elliptic functions which are considered as a “difficult” area. However, we show that elliptic functions are as straightforward as any other mathematical function under some preliminary and essential computational tools. Thus the calculation of elliptic functions is considerably simplified through the notion of the arithmetic-geometric mean of two positive numbers, a concept easily understood and simply calculated even by hand. The detailed mathematical analysis of elliptic approximation as well as the analytical design procedures of optimized elliptic filters are presented in this chapter." @default.
- W201311944 created "2016-06-24" @default.
- W201311944 creator A5016815613 @default.
- W201311944 date "2012-01-01" @default.
- W201311944 modified "2023-10-09" @default.
- W201311944 title "The Elliptic (Cauer) Approximation" @default.
- W201311944 cites W1963686710 @default.
- W201311944 cites W2063935941 @default.
- W201311944 cites W2103086805 @default.
- W201311944 cites W2319594046 @default.
- W201311944 cites W567000418 @default.
- W201311944 doi "https://doi.org/10.1007/978-94-007-2190-6_4" @default.
- W201311944 hasPublicationYear "2012" @default.
- W201311944 type Work @default.
- W201311944 sameAs 201311944 @default.
- W201311944 citedByCount "0" @default.
- W201311944 crossrefType "book-chapter" @default.
- W201311944 hasAuthorship W201311944A5016815613 @default.
- W201311944 hasConcept C123958593 @default.
- W201311944 hasConcept C134306372 @default.
- W201311944 hasConcept C179603306 @default.
- W201311944 hasConcept C197875053 @default.
- W201311944 hasConcept C201801670 @default.
- W201311944 hasConcept C28826006 @default.
- W201311944 hasConcept C33923547 @default.
- W201311944 hasConcept C52704855 @default.
- W201311944 hasConcept C73749972 @default.
- W201311944 hasConceptScore W201311944C123958593 @default.
- W201311944 hasConceptScore W201311944C134306372 @default.
- W201311944 hasConceptScore W201311944C179603306 @default.
- W201311944 hasConceptScore W201311944C197875053 @default.
- W201311944 hasConceptScore W201311944C201801670 @default.
- W201311944 hasConceptScore W201311944C28826006 @default.
- W201311944 hasConceptScore W201311944C33923547 @default.
- W201311944 hasConceptScore W201311944C52704855 @default.
- W201311944 hasConceptScore W201311944C73749972 @default.
- W201311944 hasLocation W2013119441 @default.
- W201311944 hasOpenAccess W201311944 @default.
- W201311944 hasPrimaryLocation W2013119441 @default.
- W201311944 hasRelatedWork W1847572791 @default.
- W201311944 hasRelatedWork W1985867766 @default.
- W201311944 hasRelatedWork W2014083943 @default.
- W201311944 hasRelatedWork W2085319056 @default.
- W201311944 hasRelatedWork W2125198671 @default.
- W201311944 hasRelatedWork W2317384888 @default.
- W201311944 hasRelatedWork W2391790517 @default.
- W201311944 hasRelatedWork W2392514330 @default.
- W201311944 hasRelatedWork W64106228 @default.
- W201311944 hasRelatedWork W2412578807 @default.
- W201311944 isParatext "false" @default.
- W201311944 isRetracted "false" @default.
- W201311944 magId "201311944" @default.
- W201311944 workType "book-chapter" @default.