Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013142118> ?p ?o ?g. }
- W2013142118 endingPage "2681" @default.
- W2013142118 startingPage "2671" @default.
- W2013142118 abstract "Providing energy for a population projected to reach 9 billion people within the middle of this century is one of the most pressing societal issues. Burning fossil fuels at a rate and scale that satisfy our near-term demand will irreversibly damage the living environment. Among the various sources of alternative and CO2-emission-free energies, the sun is the only source that is capable of providing enough energy for the whole world. Sunlight energy, however, is intermittent and requires an efficient storage mechanism. Sunlight-driven water splitting to make hydrogen is widely considered as one of the most attractive methods for solar energy storage. Water splitting needs a hydrogen evolution catalyst to accelerate the rate of hydrogen production and to lower the energy loss in this process. Precious metals such as Pt are superior catalysts, but they are too expensive and scarce for large-scale applications. In this Account, we summarize our recent research on the preparation, characterization, and application of amorphous molybdenum sulfide catalysts for the hydrogen evolution reaction. The catalysts can be synthesized by electrochemical deposition under ambient conditions from readily available and inexpensive precursors. The catalytic activity is among the highest for nonprecious catalysts. For example, at a loading of 0.2 mg/cm(2), the optimal catalyst delivers a current density of 10 mA/cm(2) at an overpotential of 160 mV. The growth mechanism of the electrochemically deposited film catalysts was revealed by an electrochemical quartz microcrystal balance study. While different electrochemical deposition methods produce films with different initial compositions, the active catalysts are the same and are identified as a MoS(2+x) species. The activity of the film catalysts can be further promoted by divalent Fe, Co, and Ni ions, and the origins of the promotional effects have been probed. Highly active amorphous molybdenum sulfide particles can also be prepared from simple wet-chemical routes. Electron transport is sometimes slow in the particle catalysts, and an impedance model has been established to identify this slow electron transport. Finally, the amorphous molybdenum sulfide film catalyst has been integrated onto a copper(I) oxide photocathode for photoelectrochemical hydrogen evolution. The conformal catalyst efficiently extracts the excited electrons to give an impressive photocurrent density of -5.7 mA/cm(2) at 0 V vs RHE. The catalyst also confers good stability." @default.
- W2013142118 created "2016-06-24" @default.
- W2013142118 creator A5074179289 @default.
- W2013142118 creator A5076829051 @default.
- W2013142118 date "2014-07-28" @default.
- W2013142118 modified "2023-10-03" @default.
- W2013142118 title "Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts" @default.
- W2013142118 cites W1498028909 @default.
- W2013142118 cites W1964565863 @default.
- W2013142118 cites W1970524264 @default.
- W2013142118 cites W1974267403 @default.
- W2013142118 cites W1974896731 @default.
- W2013142118 cites W1977307971 @default.
- W2013142118 cites W1983319252 @default.
- W2013142118 cites W1984443087 @default.
- W2013142118 cites W1985622385 @default.
- W2013142118 cites W1986829915 @default.
- W2013142118 cites W1991120375 @default.
- W2013142118 cites W1995292961 @default.
- W2013142118 cites W1995768566 @default.
- W2013142118 cites W2008552541 @default.
- W2013142118 cites W2010924650 @default.
- W2013142118 cites W2014306264 @default.
- W2013142118 cites W2015018289 @default.
- W2013142118 cites W2018263471 @default.
- W2013142118 cites W2022714449 @default.
- W2013142118 cites W2030372083 @default.
- W2013142118 cites W2043689142 @default.
- W2013142118 cites W2043775186 @default.
- W2013142118 cites W2050612192 @default.
- W2013142118 cites W2051339662 @default.
- W2013142118 cites W2066305393 @default.
- W2013142118 cites W2075357804 @default.
- W2013142118 cites W2090419555 @default.
- W2013142118 cites W2097563235 @default.
- W2013142118 cites W2109907295 @default.
- W2013142118 cites W2113105894 @default.
- W2013142118 cites W2115303933 @default.
- W2013142118 cites W2116382224 @default.
- W2013142118 cites W2120703005 @default.
- W2013142118 cites W2129328881 @default.
- W2013142118 cites W2131366083 @default.
- W2013142118 cites W2133795748 @default.
- W2013142118 cites W2139056417 @default.
- W2013142118 cites W2139088889 @default.
- W2013142118 cites W2150576304 @default.
- W2013142118 cites W2150950804 @default.
- W2013142118 cites W2161346221 @default.
- W2013142118 cites W2167296152 @default.
- W2013142118 cites W2172184044 @default.
- W2013142118 cites W2322587632 @default.
- W2013142118 cites W4211133984 @default.
- W2013142118 cites W4241456496 @default.
- W2013142118 doi "https://doi.org/10.1021/ar5002022" @default.
- W2013142118 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25065612" @default.
- W2013142118 hasPublicationYear "2014" @default.
- W2013142118 type Work @default.
- W2013142118 sameAs 2013142118 @default.
- W2013142118 citedByCount "514" @default.
- W2013142118 countsByYear W20131421182014 @default.
- W2013142118 countsByYear W20131421182015 @default.
- W2013142118 countsByYear W20131421182016 @default.
- W2013142118 countsByYear W20131421182017 @default.
- W2013142118 countsByYear W20131421182018 @default.
- W2013142118 countsByYear W20131421182019 @default.
- W2013142118 countsByYear W20131421182020 @default.
- W2013142118 countsByYear W20131421182021 @default.
- W2013142118 countsByYear W20131421182022 @default.
- W2013142118 countsByYear W20131421182023 @default.
- W2013142118 crossrefType "journal-article" @default.
- W2013142118 hasAuthorship W2013142118A5074179289 @default.
- W2013142118 hasAuthorship W2013142118A5076829051 @default.
- W2013142118 hasBestOaLocation W20131421182 @default.
- W2013142118 hasConcept C127413603 @default.
- W2013142118 hasConcept C144024400 @default.
- W2013142118 hasConcept C147789679 @default.
- W2013142118 hasConcept C149923435 @default.
- W2013142118 hasConcept C153465999 @default.
- W2013142118 hasConcept C161790260 @default.
- W2013142118 hasConcept C171250308 @default.
- W2013142118 hasConcept C17525397 @default.
- W2013142118 hasConcept C178790620 @default.
- W2013142118 hasConcept C179104552 @default.
- W2013142118 hasConcept C185592680 @default.
- W2013142118 hasConcept C186460083 @default.
- W2013142118 hasConcept C192562407 @default.
- W2013142118 hasConcept C202189072 @default.
- W2013142118 hasConcept C2908647359 @default.
- W2013142118 hasConcept C35590869 @default.
- W2013142118 hasConcept C42360764 @default.
- W2013142118 hasConcept C512968161 @default.
- W2013142118 hasConcept C52859227 @default.
- W2013142118 hasConcept C549387045 @default.
- W2013142118 hasConcept C56052488 @default.
- W2013142118 hasConcept C65165184 @default.
- W2013142118 hasConceptScore W2013142118C127413603 @default.
- W2013142118 hasConceptScore W2013142118C144024400 @default.
- W2013142118 hasConceptScore W2013142118C147789679 @default.