Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013190047> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2013190047 abstract "An isogeny theorem for the Drinfeld modules of rank 2 over a local field analogous to that of elliptic curves is proved. 0. INTRODUCTION Let k be a global function field over a finite constant field Fq. Drinfeld introduced the notion of elliptic modules, which are now known as Drinfeld modules, on k in analogy with classical elliptic curves. Hayes also studied this independently to generate certain class fields of k. Drinfeld modules of rank 2 have many interesting properties analogous to those of elliptic curves. We fix k to be the rational function field Fq(T). In [1] we introduced the Tate parametrization of Drinfeld modules of rank 2 with nonintegral invariants over a complete field. In this article we use the description of division points of Tate-Drinfeld modules and the methods in [6, 7] to get an isomorphism theorem for Drinfeld modules over a field with some restrictions on t and t'. In other words, there exist a and b in A = Fqq[T] such that Pa (t1) Pb (t1) is integral. This restriction does not appear in the classical case because a/fl is a unit if the valuations of a and fi are equal. From now on Drinfeld modules always mean Drinfeld modules of rank 2 defined on A = Fq[T]. 1. TATE-DRINFELD MODULES In this section we give a quick review of Tate-Drinfeld modules, which are the function field analogues of Tate elliptic curves [1]. Let k = Fq(T) and koo = Fq((T)), and let C be the completion of the algebraic closure of kok. Let IT be an element of C associated to the Carlitz module PT = TX+ Xq. Any rank 2 Drinfeld module q over C on A = Fq[T] is completely determined by (_T = TX + rl-qgXq + jt1-q2'AXq. Received by the editors April 29, 1991 and, in revised form, January 16, 1992. 1991 Mathematics Subject Classification. Primary 1 1G09, I 1R58. Partially supported by KOSEF Research Grant 91-08-00-07." @default.
- W2013190047 created "2016-06-24" @default.
- W2013190047 creator A5043059137 @default.
- W2013190047 creator A5060733589 @default.
- W2013190047 date "1993-09-01" @default.
- W2013190047 modified "2023-09-24" @default.
- W2013190047 title "Local Isogeny Theorem for Drinfeld Modules with Nonintegral Invariants" @default.
- W2013190047 cites W1970323954 @default.
- W2013190047 cites W1991490302 @default.
- W2013190047 cites W2047335221 @default.
- W2013190047 cites W2061107511 @default.
- W2013190047 cites W2324064466 @default.
- W2013190047 cites W2334893030 @default.
- W2013190047 doi "https://doi.org/10.2307/2159820" @default.
- W2013190047 hasPublicationYear "1993" @default.
- W2013190047 type Work @default.
- W2013190047 sameAs 2013190047 @default.
- W2013190047 citedByCount "1" @default.
- W2013190047 crossrefType "journal-article" @default.
- W2013190047 hasAuthorship W2013190047A5043059137 @default.
- W2013190047 hasAuthorship W2013190047A5060733589 @default.
- W2013190047 hasConcept C111919701 @default.
- W2013190047 hasConcept C114614502 @default.
- W2013190047 hasConcept C115624301 @default.
- W2013190047 hasConcept C118615104 @default.
- W2013190047 hasConcept C136119220 @default.
- W2013190047 hasConcept C157567686 @default.
- W2013190047 hasConcept C164226766 @default.
- W2013190047 hasConcept C179603306 @default.
- W2013190047 hasConcept C185592680 @default.
- W2013190047 hasConcept C202444582 @default.
- W2013190047 hasConcept C203436722 @default.
- W2013190047 hasConcept C2779765290 @default.
- W2013190047 hasConcept C2780129039 @default.
- W2013190047 hasConcept C2781025942 @default.
- W2013190047 hasConcept C33923547 @default.
- W2013190047 hasConcept C41008148 @default.
- W2013190047 hasConcept C8010536 @default.
- W2013190047 hasConcept C9652623 @default.
- W2013190047 hasConceptScore W2013190047C111919701 @default.
- W2013190047 hasConceptScore W2013190047C114614502 @default.
- W2013190047 hasConceptScore W2013190047C115624301 @default.
- W2013190047 hasConceptScore W2013190047C118615104 @default.
- W2013190047 hasConceptScore W2013190047C136119220 @default.
- W2013190047 hasConceptScore W2013190047C157567686 @default.
- W2013190047 hasConceptScore W2013190047C164226766 @default.
- W2013190047 hasConceptScore W2013190047C179603306 @default.
- W2013190047 hasConceptScore W2013190047C185592680 @default.
- W2013190047 hasConceptScore W2013190047C202444582 @default.
- W2013190047 hasConceptScore W2013190047C203436722 @default.
- W2013190047 hasConceptScore W2013190047C2779765290 @default.
- W2013190047 hasConceptScore W2013190047C2780129039 @default.
- W2013190047 hasConceptScore W2013190047C2781025942 @default.
- W2013190047 hasConceptScore W2013190047C33923547 @default.
- W2013190047 hasConceptScore W2013190047C41008148 @default.
- W2013190047 hasConceptScore W2013190047C8010536 @default.
- W2013190047 hasConceptScore W2013190047C9652623 @default.
- W2013190047 hasLocation W20131900471 @default.
- W2013190047 hasOpenAccess W2013190047 @default.
- W2013190047 hasPrimaryLocation W20131900471 @default.
- W2013190047 hasRelatedWork W1847432264 @default.
- W2013190047 hasRelatedWork W1988063741 @default.
- W2013190047 hasRelatedWork W2007743833 @default.
- W2013190047 hasRelatedWork W2032974475 @default.
- W2013190047 hasRelatedWork W2041959887 @default.
- W2013190047 hasRelatedWork W2046173556 @default.
- W2013190047 hasRelatedWork W2224312716 @default.
- W2013190047 hasRelatedWork W2323830059 @default.
- W2013190047 hasRelatedWork W2505539321 @default.
- W2013190047 hasRelatedWork W2583017775 @default.
- W2013190047 hasRelatedWork W2646707770 @default.
- W2013190047 hasRelatedWork W2909203236 @default.
- W2013190047 hasRelatedWork W2953065323 @default.
- W2013190047 hasRelatedWork W2962787568 @default.
- W2013190047 hasRelatedWork W2963534059 @default.
- W2013190047 hasRelatedWork W2982495769 @default.
- W2013190047 hasRelatedWork W3012498037 @default.
- W2013190047 hasRelatedWork W3022816842 @default.
- W2013190047 hasRelatedWork W600745449 @default.
- W2013190047 hasRelatedWork W77830467 @default.
- W2013190047 isParatext "false" @default.
- W2013190047 isRetracted "false" @default.
- W2013190047 magId "2013190047" @default.
- W2013190047 workType "article" @default.