Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013193999> ?p ?o ?g. }
- W2013193999 endingPage "9318" @default.
- W2013193999 startingPage "9307" @default.
- W2013193999 abstract "High-resolution scanning tunneling microscopy data on the reconstructed Au(111) surface are presented that give a comprehensive picture of the atomic structure, the long-range ordering, and the interaction between reconstruction and surface defects in the reconstructed surface. On the basis of the atomically resolved structure, the stacking-fault-domain model involving periodic transitions from fcc to hcp stacking of top-layer atoms is confirmed. The practically uniform contraction in the surface layer along [11ifmmodebarelsetextasciimacronfi{}0] indicates that the previously proposed soliton functionalisms are not correct descriptions for the fccensuremath{rightarrow}hcp stacking transition. The lateral displacement of ensuremath{sim}0.9 AA{} in the ${(}_{mathrm{ensuremath{-}}1}^{22}$ $_{2}^{0}$) unit cell along [112ifmmodebarelsetextasciimacronfi{}] is in good agreement with the transition between fcc and hcp stacking. The vertical displacement in the transition regions (0.20ifmmodepmelsetextpmfi{}0.05 AA{}) is largely independent of the tunneling parameters, while the atomic corrugation (0.2 AA{} typically, up to 1 AA{}) depends strongly on tunneling parameters and tip conditions.The two different stacking regions within the unit cell are directly identified from the domain pattern at step edges; fcc stacking is deduced for the wider areas and thus is energetically more favorable. A new long-range superstructure is reported. It is created by a correlated periodic bending of the parallel corrugation lines by ifmmodepmelsetextpmfi{}120ifmmode^circelsetextdegreefi{} every 250 AA{}, i.e., rotational domains are arranged in a zigzag pattern. Interactions on this scale indicate long-range elastic lattice strain. This structure reflects the overall tendency to isotropic contraction, combining the locally favorable uniaxial contraction and an effective isotropic contraction on a larger scale. Boundaries of rotational domains can also be formed by a termination of the reconstruction lines. Individual corrugation lines, separating different stacking regions, cannot disappear. The termination occurs in well-ordered, U-shaped connections of neighbored lines or by a complicated pattern of entangled corrugation lines. Steps and bulk defects do not inhibit the reconstruction, but can affect the local reconstruction pattern. In most cases steps are crossed by the reconstruction lines, and the strict correlation of the reconstruction pattern on the terraces, both in phase and orientation, reflects interaction over the step edge. Sometimes the reconstruction pattern at the steps resembles those found at rotational domain boundaries." @default.
- W2013193999 created "2016-06-24" @default.
- W2013193999 creator A5010170160 @default.
- W2013193999 creator A5039713048 @default.
- W2013193999 creator A5081873841 @default.
- W2013193999 creator A5083574245 @default.
- W2013193999 date "1990-11-15" @default.
- W2013193999 modified "2023-10-12" @default.
- W2013193999 title "Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects" @default.
- W2013193999 cites W1568796153 @default.
- W2013193999 cites W1592171891 @default.
- W2013193999 cites W1967417957 @default.
- W2013193999 cites W1970217613 @default.
- W2013193999 cites W1973858916 @default.
- W2013193999 cites W1976505921 @default.
- W2013193999 cites W1977325871 @default.
- W2013193999 cites W1982459029 @default.
- W2013193999 cites W1989056684 @default.
- W2013193999 cites W1993865732 @default.
- W2013193999 cites W1995787364 @default.
- W2013193999 cites W2000773400 @default.
- W2013193999 cites W2012913084 @default.
- W2013193999 cites W2025995488 @default.
- W2013193999 cites W2029556014 @default.
- W2013193999 cites W2031930804 @default.
- W2013193999 cites W2034569309 @default.
- W2013193999 cites W2035007577 @default.
- W2013193999 cites W2040306273 @default.
- W2013193999 cites W2041589741 @default.
- W2013193999 cites W2043460818 @default.
- W2013193999 cites W2050109096 @default.
- W2013193999 cites W2050946375 @default.
- W2013193999 cites W2072620858 @default.
- W2013193999 cites W2079954354 @default.
- W2013193999 cites W2086103188 @default.
- W2013193999 cites W2091864165 @default.
- W2013193999 cites W2163477414 @default.
- W2013193999 cites W4242305431 @default.
- W2013193999 doi "https://doi.org/10.1103/physrevb.42.9307" @default.
- W2013193999 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9995168" @default.
- W2013193999 hasPublicationYear "1990" @default.
- W2013193999 type Work @default.
- W2013193999 sameAs 2013193999 @default.
- W2013193999 citedByCount "1227" @default.
- W2013193999 countsByYear W20131939992012 @default.
- W2013193999 countsByYear W20131939992013 @default.
- W2013193999 countsByYear W20131939992014 @default.
- W2013193999 countsByYear W20131939992015 @default.
- W2013193999 countsByYear W20131939992016 @default.
- W2013193999 countsByYear W20131939992017 @default.
- W2013193999 countsByYear W20131939992018 @default.
- W2013193999 countsByYear W20131939992019 @default.
- W2013193999 countsByYear W20131939992020 @default.
- W2013193999 countsByYear W20131939992021 @default.
- W2013193999 countsByYear W20131939992022 @default.
- W2013193999 countsByYear W20131939992023 @default.
- W2013193999 crossrefType "journal-article" @default.
- W2013193999 hasAuthorship W2013193999A5010170160 @default.
- W2013193999 hasAuthorship W2013193999A5039713048 @default.
- W2013193999 hasAuthorship W2013193999A5081873841 @default.
- W2013193999 hasAuthorship W2013193999A5083574245 @default.
- W2013193999 hasBestOaLocation W20131939992 @default.
- W2013193999 hasConcept C106773901 @default.
- W2013193999 hasConcept C120398109 @default.
- W2013193999 hasConcept C121332964 @default.
- W2013193999 hasConcept C153294291 @default.
- W2013193999 hasConcept C161790260 @default.
- W2013193999 hasConcept C185592680 @default.
- W2013193999 hasConcept C188721877 @default.
- W2013193999 hasConcept C192562407 @default.
- W2013193999 hasConcept C195899389 @default.
- W2013193999 hasConcept C20885615 @default.
- W2013193999 hasConcept C2524010 @default.
- W2013193999 hasConcept C26873012 @default.
- W2013193999 hasConcept C2776799497 @default.
- W2013193999 hasConcept C2778536302 @default.
- W2013193999 hasConcept C33347731 @default.
- W2013193999 hasConcept C33923547 @default.
- W2013193999 hasConcept C41999313 @default.
- W2013193999 hasConcept C46141821 @default.
- W2013193999 hasConcept C55493867 @default.
- W2013193999 hasConcept C6518042 @default.
- W2013193999 hasConcept C8010536 @default.
- W2013193999 hasConcept C97355855 @default.
- W2013193999 hasConceptScore W2013193999C106773901 @default.
- W2013193999 hasConceptScore W2013193999C120398109 @default.
- W2013193999 hasConceptScore W2013193999C121332964 @default.
- W2013193999 hasConceptScore W2013193999C153294291 @default.
- W2013193999 hasConceptScore W2013193999C161790260 @default.
- W2013193999 hasConceptScore W2013193999C185592680 @default.
- W2013193999 hasConceptScore W2013193999C188721877 @default.
- W2013193999 hasConceptScore W2013193999C192562407 @default.
- W2013193999 hasConceptScore W2013193999C195899389 @default.
- W2013193999 hasConceptScore W2013193999C20885615 @default.
- W2013193999 hasConceptScore W2013193999C2524010 @default.
- W2013193999 hasConceptScore W2013193999C26873012 @default.
- W2013193999 hasConceptScore W2013193999C2776799497 @default.
- W2013193999 hasConceptScore W2013193999C2778536302 @default.