Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013246435> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2013246435 endingPage "1392" @default.
- W2013246435 startingPage "1373" @default.
- W2013246435 abstract "The present paper addresses two major concerns that were identified when developing neural network based prediction models and which can limit their wider applicability in the industry. The first problem is that it appears neural network models are not readily available to a corrosion engineer. Therefore the first part of this paper describes a neural network model of CO2 corrosion which was created using a standard commercial software package and simple modelling strategies. It was found that such a model was able to capture practically all of the trends noticed in the experimental data with acceptable accuracy. This exercise has proven that a corrosion engineer could readily develop a neural network model such as the one described below for any problem at hand, given that sufficient experimental data exist. This applies even in the cases when the understanding of the underlying processes is poor. The second problem arises from cases when all the required inputs for a model are not known or can be estimated with a limited degree of accuracy. It seems advantageous to have models that can take as input a range rather than a single value. One such model, based on the so-called Monte Carlo approach, is presented. A number of comparisons are shown which have illustrated how a corrosion engineer might use this approach to rapidly test the sensitivity of a model to the uncertainities associated with the input parameters." @default.
- W2013246435 created "2016-06-24" @default.
- W2013246435 creator A5000086486 @default.
- W2013246435 creator A5068587299 @default.
- W2013246435 creator A5075962452 @default.
- W2013246435 creator A5087109113 @default.
- W2013246435 date "2001-07-01" @default.
- W2013246435 modified "2023-09-27" @default.
- W2013246435 title "Probabilistic modelling of CO2 corrosion laboratory data using neural networks" @default.
- W2013246435 cites W1981789017 @default.
- W2013246435 cites W1999158882 @default.
- W2013246435 cites W2007464729 @default.
- W2013246435 cites W2045853141 @default.
- W2013246435 cites W2058878854 @default.
- W2013246435 cites W2087745000 @default.
- W2013246435 cites W2191459829 @default.
- W2013246435 cites W2325850497 @default.
- W2013246435 doi "https://doi.org/10.1016/s0010-938x(00)00157-8" @default.
- W2013246435 hasPublicationYear "2001" @default.
- W2013246435 type Work @default.
- W2013246435 sameAs 2013246435 @default.
- W2013246435 citedByCount "36" @default.
- W2013246435 countsByYear W20132464352012 @default.
- W2013246435 countsByYear W20132464352013 @default.
- W2013246435 countsByYear W20132464352014 @default.
- W2013246435 countsByYear W20132464352015 @default.
- W2013246435 countsByYear W20132464352016 @default.
- W2013246435 countsByYear W20132464352017 @default.
- W2013246435 countsByYear W20132464352018 @default.
- W2013246435 countsByYear W20132464352020 @default.
- W2013246435 countsByYear W20132464352021 @default.
- W2013246435 countsByYear W20132464352022 @default.
- W2013246435 crossrefType "journal-article" @default.
- W2013246435 hasAuthorship W2013246435A5000086486 @default.
- W2013246435 hasAuthorship W2013246435A5068587299 @default.
- W2013246435 hasAuthorship W2013246435A5075962452 @default.
- W2013246435 hasAuthorship W2013246435A5087109113 @default.
- W2013246435 hasConcept C105795698 @default.
- W2013246435 hasConcept C119857082 @default.
- W2013246435 hasConcept C127413603 @default.
- W2013246435 hasConcept C146978453 @default.
- W2013246435 hasConcept C154945302 @default.
- W2013246435 hasConcept C191897082 @default.
- W2013246435 hasConcept C192562407 @default.
- W2013246435 hasConcept C19499675 @default.
- W2013246435 hasConcept C199360897 @default.
- W2013246435 hasConcept C204323151 @default.
- W2013246435 hasConcept C20625102 @default.
- W2013246435 hasConcept C21200559 @default.
- W2013246435 hasConcept C24326235 @default.
- W2013246435 hasConcept C2777904410 @default.
- W2013246435 hasConcept C33923547 @default.
- W2013246435 hasConcept C41008148 @default.
- W2013246435 hasConcept C49937458 @default.
- W2013246435 hasConcept C50644808 @default.
- W2013246435 hasConcept C55037315 @default.
- W2013246435 hasConceptScore W2013246435C105795698 @default.
- W2013246435 hasConceptScore W2013246435C119857082 @default.
- W2013246435 hasConceptScore W2013246435C127413603 @default.
- W2013246435 hasConceptScore W2013246435C146978453 @default.
- W2013246435 hasConceptScore W2013246435C154945302 @default.
- W2013246435 hasConceptScore W2013246435C191897082 @default.
- W2013246435 hasConceptScore W2013246435C192562407 @default.
- W2013246435 hasConceptScore W2013246435C19499675 @default.
- W2013246435 hasConceptScore W2013246435C199360897 @default.
- W2013246435 hasConceptScore W2013246435C204323151 @default.
- W2013246435 hasConceptScore W2013246435C20625102 @default.
- W2013246435 hasConceptScore W2013246435C21200559 @default.
- W2013246435 hasConceptScore W2013246435C24326235 @default.
- W2013246435 hasConceptScore W2013246435C2777904410 @default.
- W2013246435 hasConceptScore W2013246435C33923547 @default.
- W2013246435 hasConceptScore W2013246435C41008148 @default.
- W2013246435 hasConceptScore W2013246435C49937458 @default.
- W2013246435 hasConceptScore W2013246435C50644808 @default.
- W2013246435 hasConceptScore W2013246435C55037315 @default.
- W2013246435 hasIssue "7" @default.
- W2013246435 hasLocation W20132464351 @default.
- W2013246435 hasOpenAccess W2013246435 @default.
- W2013246435 hasPrimaryLocation W20132464351 @default.
- W2013246435 hasRelatedWork W1621994709 @default.
- W2013246435 hasRelatedWork W2020004691 @default.
- W2013246435 hasRelatedWork W2349968655 @default.
- W2013246435 hasRelatedWork W2961085424 @default.
- W2013246435 hasRelatedWork W4285260836 @default.
- W2013246435 hasRelatedWork W4286629047 @default.
- W2013246435 hasRelatedWork W4290792893 @default.
- W2013246435 hasRelatedWork W4306321456 @default.
- W2013246435 hasRelatedWork W4306674287 @default.
- W2013246435 hasRelatedWork W4224009465 @default.
- W2013246435 hasVolume "43" @default.
- W2013246435 isParatext "false" @default.
- W2013246435 isRetracted "false" @default.
- W2013246435 magId "2013246435" @default.
- W2013246435 workType "article" @default.