Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013251188> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2013251188 abstract "Computer systems are characterized by an ever-growing complexity and a pronounced distributed nature. Since controlling highly distributed systems and managing the communication among them are far beyond the capabilities of a central entity, it is essential to develop new decentralized architectures. Such architectures, for example Grids, Clouds and P2P systems, are increasingly popular, but they need new types of algorithms to be efficiently managed. The recent paradigm of Organic computing (OC) concerns a large collection of intelligent (embedded) systems with potentially unlimited networks and spontaneous local interactions (Merkle et al. 2008; Muller-Schloer et al. 2011). The goal of OC is to develop new concepts and tools to manage the complexity of such systems, which must be designed to be adaptive, self-organized and manageable at the same time (Schmeck 2005). Adaptive OC systems must be capable of learning and adjusting their behaviour to dynamically changing environments. In addition, they should have self-x properties such as self-healing, selfdefining, self-configuring and self-optimizing. These properties are inspired by the mechanisms used by the autonomic nervous system to regulate the body without conscious input from the individual. Bio-inspired algorithms and techniques feature fault-tolerant and self-adaptive behaviours that help to boost the autonomic nature of distributed systems (Germain-Renaud and Rana 2009), and are proving effective to solve highly parallel and distributed problems. These techniques sometimes rely on the operations of agents, whose behaviour is inspired by biological systems, including ant colonies, bird flocks, honey bees, bacteria, and many more. In such systems, ‘‘swarm intelligence’’ emerges from the interaction of a large number of very simple agents. Bio-inspired algorithms have been successfully used as alternative and/or superior solutions to the problems that traditional algorithms cannot solve satisfactorily. In recognition of their achievements and potential, bio-inspired algorithms were named one of Scientific American magazine’s 10 ‘‘World Changing Ideas 2010’’. Bio-inspired algorithms and systems are applied to hard and large problems in a variety of areas. Some examples are optimization problems solved with genetic algorithms, routing strategies inspired by honey bee behaviour, ant-inspired resource discovery and data mining computations in Grid, Cloud and P2P frameworks, and so on. The papers included in this special issue show recent results in the area of bio-inspired distributed computing. The authors presented their preliminary works in the 3rd Workshop on Bio-Inspired and Self-* Algorithms for Distributed Systems, BADS 2011 (Folino et al. 2011), which was held together with the International Conference on Autonomic Computing (ICAC 2011) in Karlsruhe, Germany, in June 2011. The three papers were first selected among the papers presented in BADS 2011; then, they were extended and refined through two rounds of reviews. The paper ‘‘Protein structure prediction using distributed parallel particle swarm optimization’’, by Ivan Kondov, demonstrates the efficiency of the standard Particle swarm optimization (PSO) algorithm in the hard task of finding G. Folino (&) C. Mastroianni ICAR-CNR, Rendi, CS, Italy e-mail: folino@icar.cnr.it" @default.
- W2013251188 created "2016-06-24" @default.
- W2013251188 creator A5013173651 @default.
- W2013251188 creator A5064569017 @default.
- W2013251188 creator A5082766647 @default.
- W2013251188 date "2012-04-13" @default.
- W2013251188 modified "2023-09-23" @default.
- W2013251188 title "Preface: nature inspired solutions for high performance computing" @default.
- W2013251188 cites W1496051353 @default.
- W2013251188 cites W2137655221 @default.
- W2013251188 cites W2153768917 @default.
- W2013251188 doi "https://doi.org/10.1007/s11047-012-9326-9" @default.
- W2013251188 hasPublicationYear "2012" @default.
- W2013251188 type Work @default.
- W2013251188 sameAs 2013251188 @default.
- W2013251188 citedByCount "0" @default.
- W2013251188 crossrefType "journal-article" @default.
- W2013251188 hasAuthorship W2013251188A5013173651 @default.
- W2013251188 hasAuthorship W2013251188A5064569017 @default.
- W2013251188 hasAuthorship W2013251188A5082766647 @default.
- W2013251188 hasBestOaLocation W20132511881 @default.
- W2013251188 hasConcept C111919701 @default.
- W2013251188 hasConcept C120314980 @default.
- W2013251188 hasConcept C154945302 @default.
- W2013251188 hasConcept C41008148 @default.
- W2013251188 hasConcept C558632462 @default.
- W2013251188 hasConcept C63540848 @default.
- W2013251188 hasConcept C79974875 @default.
- W2013251188 hasConcept C80444323 @default.
- W2013251188 hasConceptScore W2013251188C111919701 @default.
- W2013251188 hasConceptScore W2013251188C120314980 @default.
- W2013251188 hasConceptScore W2013251188C154945302 @default.
- W2013251188 hasConceptScore W2013251188C41008148 @default.
- W2013251188 hasConceptScore W2013251188C558632462 @default.
- W2013251188 hasConceptScore W2013251188C63540848 @default.
- W2013251188 hasConceptScore W2013251188C79974875 @default.
- W2013251188 hasConceptScore W2013251188C80444323 @default.
- W2013251188 hasLocation W20132511881 @default.
- W2013251188 hasOpenAccess W2013251188 @default.
- W2013251188 hasPrimaryLocation W20132511881 @default.
- W2013251188 hasRelatedWork W1508971832 @default.
- W2013251188 hasRelatedWork W1670304370 @default.
- W2013251188 hasRelatedWork W2000511987 @default.
- W2013251188 hasRelatedWork W2020465399 @default.
- W2013251188 hasRelatedWork W2064010134 @default.
- W2013251188 hasRelatedWork W2118064621 @default.
- W2013251188 hasRelatedWork W2149554120 @default.
- W2013251188 hasRelatedWork W2336576244 @default.
- W2013251188 hasRelatedWork W2440605052 @default.
- W2013251188 hasRelatedWork W2461786957 @default.
- W2013251188 hasRelatedWork W2769951307 @default.
- W2013251188 hasRelatedWork W2811108535 @default.
- W2013251188 hasRelatedWork W2899431999 @default.
- W2013251188 hasRelatedWork W2995817092 @default.
- W2013251188 hasRelatedWork W3067704092 @default.
- W2013251188 hasRelatedWork W3150004433 @default.
- W2013251188 hasRelatedWork W3164371086 @default.
- W2013251188 hasRelatedWork W3180290898 @default.
- W2013251188 hasRelatedWork W3186147485 @default.
- W2013251188 hasRelatedWork W3210563674 @default.
- W2013251188 isParatext "false" @default.
- W2013251188 isRetracted "false" @default.
- W2013251188 magId "2013251188" @default.
- W2013251188 workType "article" @default.