Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013262814> ?p ?o ?g. }
- W2013262814 endingPage "592" @default.
- W2013262814 startingPage "570" @default.
- W2013262814 abstract "In this paper, we review both the fundamentals and the expansion of computational Bayesian econometrics and statistics applied to transportation modeling problems in road safety analysis and travel behavior. Whereas for analyzing accident risk in transportation networks there has been a significant increase in the application of hierarchical Bayes methods, in transportation choice modeling, the use of Bayes estimators is rather scarce. We thus provide a general discussion of the benefits of using Bayesian Markov chain Monte Carlo methods to simulate answers to the problems of point and interval estimation and forecasting, including the use of the simulated posterior for building predictive distributions and constructing credible intervals for measures such as the value of time. Although there is the general idea that going Bayesian is just another way of finding an equivalent to frequentist results, in practice Bayes estimators have the potential of outperforming frequentist estimators and, at the same time, may offer more information. Additionally, Bayesian inference is particularly interesting for small samples and weakly identified models." @default.
- W2013262814 created "2016-06-24" @default.
- W2013262814 creator A5040521870 @default.
- W2013262814 creator A5056770504 @default.
- W2013262814 creator A5076568601 @default.
- W2013262814 date "2013-09-01" @default.
- W2013262814 modified "2023-09-23" @default.
- W2013262814 title "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice" @default.
- W2013262814 cites W1583412610 @default.
- W2013262814 cites W1595407465 @default.
- W2013262814 cites W1968097274 @default.
- W2013262814 cites W1978054151 @default.
- W2013262814 cites W1980514878 @default.
- W2013262814 cites W1981530736 @default.
- W2013262814 cites W1994041126 @default.
- W2013262814 cites W1996341585 @default.
- W2013262814 cites W2016157126 @default.
- W2013262814 cites W2017259260 @default.
- W2013262814 cites W2020764933 @default.
- W2013262814 cites W2026154856 @default.
- W2013262814 cites W2026750350 @default.
- W2013262814 cites W2028754797 @default.
- W2013262814 cites W2029807096 @default.
- W2013262814 cites W2031480688 @default.
- W2013262814 cites W2034450538 @default.
- W2013262814 cites W2038868471 @default.
- W2013262814 cites W2046586869 @default.
- W2013262814 cites W2052889772 @default.
- W2013262814 cites W2057717470 @default.
- W2013262814 cites W2060817938 @default.
- W2013262814 cites W2074818071 @default.
- W2013262814 cites W2081597971 @default.
- W2013262814 cites W2083875149 @default.
- W2013262814 cites W2097632999 @default.
- W2013262814 cites W2107647072 @default.
- W2013262814 cites W2108306139 @default.
- W2013262814 cites W2113612236 @default.
- W2013262814 cites W2117569500 @default.
- W2013262814 cites W2122362215 @default.
- W2013262814 cites W2124953793 @default.
- W2013262814 cites W2125961882 @default.
- W2013262814 cites W2140485145 @default.
- W2013262814 cites W2167128659 @default.
- W2013262814 cites W2168675580 @default.
- W2013262814 cites W2170251842 @default.
- W2013262814 cites W2170481316 @default.
- W2013262814 cites W2171184851 @default.
- W2013262814 cites W2178806032 @default.
- W2013262814 cites W23196404 @default.
- W2013262814 cites W3122101239 @default.
- W2013262814 cites W3125597289 @default.
- W2013262814 cites W4229671821 @default.
- W2013262814 cites W4235161505 @default.
- W2013262814 doi "https://doi.org/10.1080/01441647.2013.829890" @default.
- W2013262814 hasPublicationYear "2013" @default.
- W2013262814 type Work @default.
- W2013262814 sameAs 2013262814 @default.
- W2013262814 citedByCount "13" @default.
- W2013262814 countsByYear W20132628142013 @default.
- W2013262814 countsByYear W20132628142014 @default.
- W2013262814 countsByYear W20132628142015 @default.
- W2013262814 countsByYear W20132628142017 @default.
- W2013262814 countsByYear W20132628142018 @default.
- W2013262814 countsByYear W20132628142019 @default.
- W2013262814 countsByYear W20132628142020 @default.
- W2013262814 countsByYear W20132628142021 @default.
- W2013262814 countsByYear W20132628142022 @default.
- W2013262814 crossrefType "journal-article" @default.
- W2013262814 hasAuthorship W2013262814A5040521870 @default.
- W2013262814 hasAuthorship W2013262814A5056770504 @default.
- W2013262814 hasAuthorship W2013262814A5076568601 @default.
- W2013262814 hasConcept C101112237 @default.
- W2013262814 hasConcept C105795698 @default.
- W2013262814 hasConcept C107673813 @default.
- W2013262814 hasConcept C111350023 @default.
- W2013262814 hasConcept C142291917 @default.
- W2013262814 hasConcept C149782125 @default.
- W2013262814 hasConcept C154945302 @default.
- W2013262814 hasConcept C160234255 @default.
- W2013262814 hasConcept C162376815 @default.
- W2013262814 hasConcept C185429906 @default.
- W2013262814 hasConcept C191413810 @default.
- W2013262814 hasConcept C207201462 @default.
- W2013262814 hasConcept C2776214188 @default.
- W2013262814 hasConcept C33923547 @default.
- W2013262814 hasConcept C41008148 @default.
- W2013262814 hasConcept C41426520 @default.
- W2013262814 hasConceptScore W2013262814C101112237 @default.
- W2013262814 hasConceptScore W2013262814C105795698 @default.
- W2013262814 hasConceptScore W2013262814C107673813 @default.
- W2013262814 hasConceptScore W2013262814C111350023 @default.
- W2013262814 hasConceptScore W2013262814C142291917 @default.
- W2013262814 hasConceptScore W2013262814C149782125 @default.
- W2013262814 hasConceptScore W2013262814C154945302 @default.
- W2013262814 hasConceptScore W2013262814C160234255 @default.
- W2013262814 hasConceptScore W2013262814C162376815 @default.
- W2013262814 hasConceptScore W2013262814C185429906 @default.
- W2013262814 hasConceptScore W2013262814C191413810 @default.