Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013273640> ?p ?o ?g. }
- W2013273640 endingPage "14233" @default.
- W2013273640 startingPage "14233" @default.
- W2013273640 abstract "In this study, an “autoclave route” was applied for the synthesis of 2D sp2 hybrid BN nanomaterials. By simply increasing the reaction temperature, a phase and morphology transformation occurs. The turbostratic BN nanosheets (BNNSs, 2–6 nm, 400–500 °C) transformed into the mixed phases (r-BN and h-BN) of triangular nanoplates (BNTPs) in the temperature range of 550–600 °C, and finally to h-BN nanocrystals (BNNCs, >730 °C). Interestingly, the intergrowths of r-BN and h-BN into the BNTP and BNNC plate was obtained in the range of 600–690 °C, which were determined via the selected area electron diffraction (SAED) pattern. Basically, the sizes (side length and thinness) of BNTPs and BNNCs can be tuned by adjusting the reaction temperature and time. The phase transformation temperature was much lower than that of previous reports. The in situ produced Fe nanoparticles, molten Na and autogenic pressure were considered to have positive effects on the phase transformation. Their band gap was estimated to be 5.6–5.8 eV according to the optical absorption spectrum, and Cathodoluminescence (CL) images show that as-synthesized BN nanomaterials had uniform optical properties in the ultraviolet region. Besides, the Ag–BN composite showed excellent antibacterial activities and therefore has potential applications in biomedical and related fields." @default.
- W2013273640 created "2016-06-24" @default.
- W2013273640 creator A5039371059 @default.
- W2013273640 creator A5045457397 @default.
- W2013273640 creator A5047724448 @default.
- W2013273640 creator A5064240723 @default.
- W2013273640 creator A5082450392 @default.
- W2013273640 date "2014-01-01" @default.
- W2013273640 modified "2023-09-24" @default.
- W2013273640 title "From ultrathin nanosheets, triangular plates to nanocrystals with exposed (102) facets, a morphology and phase transformation of sp2 hybrid BN nanomaterials" @default.
- W2013273640 cites W1969053042 @default.
- W2013273640 cites W1971454708 @default.
- W2013273640 cites W1972115096 @default.
- W2013273640 cites W1973725704 @default.
- W2013273640 cites W1981353097 @default.
- W2013273640 cites W1982277894 @default.
- W2013273640 cites W1982741821 @default.
- W2013273640 cites W1985367418 @default.
- W2013273640 cites W1989817518 @default.
- W2013273640 cites W1991294470 @default.
- W2013273640 cites W1996501305 @default.
- W2013273640 cites W2011869449 @default.
- W2013273640 cites W2012587360 @default.
- W2013273640 cites W2019028736 @default.
- W2013273640 cites W2024633875 @default.
- W2013273640 cites W2028019288 @default.
- W2013273640 cites W2032823609 @default.
- W2013273640 cites W2043644124 @default.
- W2013273640 cites W2044834463 @default.
- W2013273640 cites W2063237484 @default.
- W2013273640 cites W2063924591 @default.
- W2013273640 cites W2064689382 @default.
- W2013273640 cites W2067147697 @default.
- W2013273640 cites W2075599529 @default.
- W2013273640 cites W2077403760 @default.
- W2013273640 cites W2077793223 @default.
- W2013273640 cites W2078508379 @default.
- W2013273640 cites W2081980564 @default.
- W2013273640 cites W2083607801 @default.
- W2013273640 cites W2085339491 @default.
- W2013273640 cites W2091587267 @default.
- W2013273640 cites W2096421416 @default.
- W2013273640 cites W2107404697 @default.
- W2013273640 cites W2113050531 @default.
- W2013273640 cites W2123707571 @default.
- W2013273640 cites W2124252718 @default.
- W2013273640 cites W2134326722 @default.
- W2013273640 cites W2149931299 @default.
- W2013273640 cites W2155637423 @default.
- W2013273640 cites W2334892547 @default.
- W2013273640 cites W2951647716 @default.
- W2013273640 cites W2964038077 @default.
- W2013273640 cites W4232340697 @default.
- W2013273640 doi "https://doi.org/10.1039/c3ra47005a" @default.
- W2013273640 hasPublicationYear "2014" @default.
- W2013273640 type Work @default.
- W2013273640 sameAs 2013273640 @default.
- W2013273640 citedByCount "25" @default.
- W2013273640 countsByYear W20132736402014 @default.
- W2013273640 countsByYear W20132736402015 @default.
- W2013273640 countsByYear W20132736402016 @default.
- W2013273640 countsByYear W20132736402017 @default.
- W2013273640 countsByYear W20132736402018 @default.
- W2013273640 countsByYear W20132736402019 @default.
- W2013273640 countsByYear W20132736402020 @default.
- W2013273640 countsByYear W20132736402021 @default.
- W2013273640 countsByYear W20132736402022 @default.
- W2013273640 countsByYear W20132736402023 @default.
- W2013273640 crossrefType "journal-article" @default.
- W2013273640 hasAuthorship W2013273640A5039371059 @default.
- W2013273640 hasAuthorship W2013273640A5045457397 @default.
- W2013273640 hasAuthorship W2013273640A5047724448 @default.
- W2013273640 hasAuthorship W2013273640A5064240723 @default.
- W2013273640 hasAuthorship W2013273640A5082450392 @default.
- W2013273640 hasConcept C121332964 @default.
- W2013273640 hasConcept C125287762 @default.
- W2013273640 hasConcept C127413603 @default.
- W2013273640 hasConcept C138631740 @default.
- W2013273640 hasConcept C139861200 @default.
- W2013273640 hasConcept C146088050 @default.
- W2013273640 hasConcept C148869448 @default.
- W2013273640 hasConcept C153294291 @default.
- W2013273640 hasConcept C155672457 @default.
- W2013273640 hasConcept C159985019 @default.
- W2013273640 hasConcept C171250308 @default.
- W2013273640 hasConcept C175854130 @default.
- W2013273640 hasConcept C178790620 @default.
- W2013273640 hasConcept C181966813 @default.
- W2013273640 hasConcept C185592680 @default.
- W2013273640 hasConcept C191897082 @default.
- W2013273640 hasConcept C192562407 @default.
- W2013273640 hasConcept C27461994 @default.
- W2013273640 hasConcept C39353612 @default.
- W2013273640 hasConcept C42360764 @default.
- W2013273640 hasConcept C43088074 @default.
- W2013273640 hasConcept C44280652 @default.
- W2013273640 hasConcept C49040817 @default.
- W2013273640 hasConcept C499950583 @default.