Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013339212> ?p ?o ?g. }
- W2013339212 endingPage "1345" @default.
- W2013339212 startingPage "1328" @default.
- W2013339212 abstract "The planetary fourier spectrometer (PFS) for the Mars express mission (MEX) is an infrared spectrometer operating in the wavelength range from 1.2 to 45 μm by means of two spectral channels, called SWC (short wavelength channel) and LWC (long wavelength channel), covering, respectively, 1.2–5.5 and 5.5–45 μm. The middle-spring Martian north polar cap (Ls∼40°) has been observed by PFS/MEX in illuminated conditions during orbit 452. The SWC spectra are here used to study the cap composition in terms of CO2 ice, H2O ice and dust content. Significant spectral variation is noted in the cap interior, and regions of varying CO2 ice grain sizes, water frost abundance, CO2 ice cover and dust contamination can be distinguished. In addition, we correlate the infrared spectra with an image acquired during the same orbit by the OMEGA imaging spectrometer and with the altimetry from MOLA data. Many of the spectra variations correlate with heterogeneities noted in the image, although significant spectral variations are not discernible in the visible. The data have been divided into five regions with different latitude ranges and strong similarities in the spectra, and then averaged. Bi-directional reflectance models have been run with the appropriate lighting geometry and used to fit the observed data, allowing for CO2 ice and H2O ice grain sizes, dust and H2O ice contaminations in the form of intimate granular mixtures and spatial mixtures. A wide annulus of dusty water ice surrounds the recessing CO2 seasonal cap. The inner cap exhibits a layered structure with a thin CO2 layer with varying concentrations of dark dust, on top of an H2O ice underneath ground. In the best-fits, the ices beneath the top layer have been considered as spatial mixtures. The results are still very good everywhere in the spectral range, except where the CO2 ice absorption coefficients are such that even a thin layer is enough to totally absorb the incoming radiation (i.e. the band is saturated). This only happens around 3800 cm−1, inside the strong 2.7-μm CO2 ice absorption band. The effect of finite snow depth has been investigated through a layered albedo model. The thickness of the CO2 ice deposits increases with latitude, ranging from 0.5–1 g cm−2 within region II to 60–80 g cm−2 within the highest-latitude (up to 84°N) region V. Region I is at the cap edge and extends from 65°N to 72°N latitude. No CO2 ice is present in this region, which consists of relatively large grains of water ice (20 μm), highly contaminated by dust (0.15 wt%). The adjacent region II is a narrow region [76–79°N] right at the edge of the north residual polar cap. This region is very distinct in the OMEGA image, where it appears to surround the whole residual cap. The CO2 ice features are barely visible in these spectra, except for the strong saturated 2.7 μm band. It basically consists of a thin layer of 5-mm CO2 ice on top of an H2O ice layer with the same composition as region I. A third interesting region III is found all along the shoulder of the residual cap [79–81°N]. It extends over 1.5 km in altitude and over only 2° of latitude and consists of CO2 ice with a large dust content. It is an admixture of CO2 ice (3–4 mm), with several tens of ppm by mass of water ice and more than 2 ppt by mass of dust. The surface temperatures have been retrieved from the LWC spectra for each observation. We found an increase in the surface temperature in this region, indicating a spatial mixture of cold CO2 ice and warmer dust/H2O ice. Region IV is close to the top of the residual cap [81–84°N]; it is much brighter than region III, with a dust content 10 times lower than the latter. The CO2 grain size is 3 mm and strong CO2 ice features are present in the data, indicating a thicker CO2 ice layer than in region II (1–2 g cm−2). The final region V is right at the top of the residual cap (⩾84°N). It is “pure” CO2 ice (no dust) of 5 mm grain sizes, with 30 ppm by weight of water ice. The CO2 ice features are very pronounced and the 2.7 μm band is saturated. The optical thickness is close to the semi-infinite limit (30–40 g cm−2). Assuming a snowpack density of 0.5 g cm−3, we get a minimum thickness of 1–2 cm for the top-layer of regions II and III, 4–10 cm for region IV, and ⩾60–80 cm thickness for region V. These values are in close agreement with several recent results for the south seasonal polar cap. These results should provide new, useful constraints in models of the Martian climate system and volatile cycles." @default.
- W2013339212 created "2016-06-24" @default.
- W2013339212 creator A5008236340 @default.
- W2013339212 creator A5024778716 @default.
- W2013339212 creator A5031414738 @default.
- W2013339212 creator A5045805605 @default.
- W2013339212 creator A5061187447 @default.
- W2013339212 creator A5065036871 @default.
- W2013339212 creator A5071186738 @default.
- W2013339212 date "2007-07-01" @default.
- W2013339212 modified "2023-10-13" @default.
- W2013339212 title "Spatial variability, composition and thickness of the seasonal north polar cap of Mars in mid-spring" @default.
- W2013339212 cites W1502337407 @default.
- W2013339212 cites W1612376369 @default.
- W2013339212 cites W1966528118 @default.
- W2013339212 cites W1975060587 @default.
- W2013339212 cites W1976469262 @default.
- W2013339212 cites W1981134783 @default.
- W2013339212 cites W1985744438 @default.
- W2013339212 cites W1986537831 @default.
- W2013339212 cites W1987334472 @default.
- W2013339212 cites W1987696139 @default.
- W2013339212 cites W1988556414 @default.
- W2013339212 cites W1991980856 @default.
- W2013339212 cites W1995240938 @default.
- W2013339212 cites W1998468785 @default.
- W2013339212 cites W2001535410 @default.
- W2013339212 cites W2003636035 @default.
- W2013339212 cites W2006457591 @default.
- W2013339212 cites W2009065106 @default.
- W2013339212 cites W2012430312 @default.
- W2013339212 cites W2013116770 @default.
- W2013339212 cites W2016974941 @default.
- W2013339212 cites W2017978427 @default.
- W2013339212 cites W2020097632 @default.
- W2013339212 cites W2020598451 @default.
- W2013339212 cites W2025663379 @default.
- W2013339212 cites W2033071245 @default.
- W2013339212 cites W2045225524 @default.
- W2013339212 cites W2047409546 @default.
- W2013339212 cites W2049345758 @default.
- W2013339212 cites W2056572440 @default.
- W2013339212 cites W2057026020 @default.
- W2013339212 cites W2059672595 @default.
- W2013339212 cites W2066537922 @default.
- W2013339212 cites W2068037951 @default.
- W2013339212 cites W2070259289 @default.
- W2013339212 cites W2076964321 @default.
- W2013339212 cites W2078222544 @default.
- W2013339212 cites W2087899628 @default.
- W2013339212 cites W2092424125 @default.
- W2013339212 cites W2093361212 @default.
- W2013339212 cites W2121824074 @default.
- W2013339212 cites W2137568169 @default.
- W2013339212 cites W2145395069 @default.
- W2013339212 cites W2164484735 @default.
- W2013339212 cites W2168658220 @default.
- W2013339212 cites W2171020757 @default.
- W2013339212 cites W4241097380 @default.
- W2013339212 cites W4247175323 @default.
- W2013339212 doi "https://doi.org/10.1016/j.pss.2007.03.006" @default.
- W2013339212 hasPublicationYear "2007" @default.
- W2013339212 type Work @default.
- W2013339212 sameAs 2013339212 @default.
- W2013339212 citedByCount "13" @default.
- W2013339212 countsByYear W20133392122013 @default.
- W2013339212 countsByYear W20133392122014 @default.
- W2013339212 countsByYear W20133392122017 @default.
- W2013339212 countsByYear W20133392122018 @default.
- W2013339212 countsByYear W20133392122022 @default.
- W2013339212 crossrefType "journal-article" @default.
- W2013339212 hasAuthorship W2013339212A5008236340 @default.
- W2013339212 hasAuthorship W2013339212A5024778716 @default.
- W2013339212 hasAuthorship W2013339212A5031414738 @default.
- W2013339212 hasAuthorship W2013339212A5045805605 @default.
- W2013339212 hasAuthorship W2013339212A5061187447 @default.
- W2013339212 hasAuthorship W2013339212A5065036871 @default.
- W2013339212 hasAuthorship W2013339212A5071186738 @default.
- W2013339212 hasConcept C120665830 @default.
- W2013339212 hasConcept C121332964 @default.
- W2013339212 hasConcept C127313418 @default.
- W2013339212 hasConcept C1276947 @default.
- W2013339212 hasConcept C29705727 @default.
- W2013339212 hasConcept C33390570 @default.
- W2013339212 hasConcept C39432304 @default.
- W2013339212 hasConcept C4839761 @default.
- W2013339212 hasConcept C6260449 @default.
- W2013339212 hasConcept C83260615 @default.
- W2013339212 hasConcept C87355193 @default.
- W2013339212 hasConcept C91586092 @default.
- W2013339212 hasConceptScore W2013339212C120665830 @default.
- W2013339212 hasConceptScore W2013339212C121332964 @default.
- W2013339212 hasConceptScore W2013339212C127313418 @default.
- W2013339212 hasConceptScore W2013339212C1276947 @default.
- W2013339212 hasConceptScore W2013339212C29705727 @default.
- W2013339212 hasConceptScore W2013339212C33390570 @default.
- W2013339212 hasConceptScore W2013339212C39432304 @default.
- W2013339212 hasConceptScore W2013339212C4839761 @default.