Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013399084> ?p ?o ?g. }
- W2013399084 endingPage "99" @default.
- W2013399084 startingPage "75" @default.
- W2013399084 abstract "Computational intensity and sequential nature of estimation techniques for Bayesian methods in statistics and machine learning, combined with their increasing applications for big data analytics, necessitate both the identification of potential opportunities to parallelize techniques such as Monte Carlo Markov Chain (MCMC) sampling, and the development of general strategies for mapping such parallel algorithms to modern CPUs in order to elicit the performance up the compute-based and/or memory-based hardware limits. Two opportunities for Single-Instruction Multiple-Data (SIMD) parallelization of MCMC sampling for probabilistic graphical models are presented. In exchangeable models with many observations such as Bayesian Generalized Linear Models (GLMs), child-node contributions to the conditional posterior of each node can be calculated concurrently. In undirected graphs with discrete-value nodes, concurrent sampling of conditionally-independent nodes can be transformed into a SIMD form. High-performance libraries with multi-threading and vectorization capabilities can be readily applied to such SIMD opportunities to gain decent speedup, while a series of high-level source-code and runtime modifications provide further performance boost by reducing parallelization overhead and increasing data locality for Non-Uniform Memory Access architectures. For big-data Bayesian GLM graphs, the end-result is a routine for evaluating the conditional posterior and its gradient vector that is 5 times faster than a naive implementation using (built-in) multi-threaded Intel MKL BLAS, and reaches within the striking distance of the memory-bandwidth-induced hardware limit. Using multi-threading for cache-friendly, fine-grained parallelization can outperform coarse-grained alternatives which are often less cache-friendly, a likely scenario in modern predictive analytics workflow such as Hierarchical Bayesian GLM, variable selection, and ensemble regression and classification. The proposed optimization strategies improve the scaling of performance with number of cores and width of vector units (applicable to many-core SIMD processors such as Intel Xeon Phi and Graphic Processing Units), resulting in cost-effectiveness, energy efficiency (‘green computing’), and higher speed on multi-core x86 processors." @default.
- W2013399084 created "2016-06-24" @default.
- W2013399084 creator A5062447797 @default.
- W2013399084 creator A5071770980 @default.
- W2013399084 date "2015-08-01" @default.
- W2013399084 modified "2023-10-15" @default.
- W2013399084 title "SIMD parallel MCMC sampling with applications for big-data Bayesian analytics" @default.
- W2013399084 cites W1545319692 @default.
- W2013399084 cites W1849956890 @default.
- W2013399084 cites W1982856108 @default.
- W2013399084 cites W1995051946 @default.
- W2013399084 cites W2004473920 @default.
- W2013399084 cites W2006384093 @default.
- W2013399084 cites W2011792007 @default.
- W2013399084 cites W2012627868 @default.
- W2013399084 cites W2020999234 @default.
- W2013399084 cites W2026237068 @default.
- W2013399084 cites W2027235634 @default.
- W2013399084 cites W2042492924 @default.
- W2013399084 cites W2051203581 @default.
- W2013399084 cites W2051368227 @default.
- W2013399084 cites W2056760934 @default.
- W2013399084 cites W2059448777 @default.
- W2013399084 cites W2063998852 @default.
- W2013399084 cites W2065704711 @default.
- W2013399084 cites W2088857433 @default.
- W2013399084 cites W2091225596 @default.
- W2013399084 cites W2096544401 @default.
- W2013399084 cites W2122020906 @default.
- W2013399084 cites W2125663122 @default.
- W2013399084 cites W2128084896 @default.
- W2013399084 cites W2136922672 @default.
- W2013399084 cites W2136958763 @default.
- W2013399084 cites W2138309709 @default.
- W2013399084 cites W2140636994 @default.
- W2013399084 cites W2167917621 @default.
- W2013399084 cites W2171166366 @default.
- W2013399084 cites W2174706414 @default.
- W2013399084 cites W2204383650 @default.
- W2013399084 cites W32980360 @default.
- W2013399084 cites W4292691288 @default.
- W2013399084 cites W48272409 @default.
- W2013399084 doi "https://doi.org/10.1016/j.csda.2015.02.010" @default.
- W2013399084 hasPublicationYear "2015" @default.
- W2013399084 type Work @default.
- W2013399084 sameAs 2013399084 @default.
- W2013399084 citedByCount "17" @default.
- W2013399084 countsByYear W20133990842015 @default.
- W2013399084 countsByYear W20133990842016 @default.
- W2013399084 countsByYear W20133990842017 @default.
- W2013399084 countsByYear W20133990842018 @default.
- W2013399084 countsByYear W20133990842019 @default.
- W2013399084 countsByYear W20133990842020 @default.
- W2013399084 countsByYear W20133990842021 @default.
- W2013399084 countsByYear W20133990842022 @default.
- W2013399084 crossrefType "journal-article" @default.
- W2013399084 hasAuthorship W2013399084A5062447797 @default.
- W2013399084 hasAuthorship W2013399084A5071770980 @default.
- W2013399084 hasBestOaLocation W20133990842 @default.
- W2013399084 hasConcept C107673813 @default.
- W2013399084 hasConcept C111350023 @default.
- W2013399084 hasConcept C11413529 @default.
- W2013399084 hasConcept C133875982 @default.
- W2013399084 hasConcept C150552126 @default.
- W2013399084 hasConcept C154945302 @default.
- W2013399084 hasConcept C173608175 @default.
- W2013399084 hasConcept C41008148 @default.
- W2013399084 hasConcept C68339613 @default.
- W2013399084 hasConcept C91481028 @default.
- W2013399084 hasConceptScore W2013399084C107673813 @default.
- W2013399084 hasConceptScore W2013399084C111350023 @default.
- W2013399084 hasConceptScore W2013399084C11413529 @default.
- W2013399084 hasConceptScore W2013399084C133875982 @default.
- W2013399084 hasConceptScore W2013399084C150552126 @default.
- W2013399084 hasConceptScore W2013399084C154945302 @default.
- W2013399084 hasConceptScore W2013399084C173608175 @default.
- W2013399084 hasConceptScore W2013399084C41008148 @default.
- W2013399084 hasConceptScore W2013399084C68339613 @default.
- W2013399084 hasConceptScore W2013399084C91481028 @default.
- W2013399084 hasLocation W20133990841 @default.
- W2013399084 hasLocation W20133990842 @default.
- W2013399084 hasLocation W20133990843 @default.
- W2013399084 hasOpenAccess W2013399084 @default.
- W2013399084 hasPrimaryLocation W20133990841 @default.
- W2013399084 hasRelatedWork W115093676 @default.
- W2013399084 hasRelatedWork W1530780171 @default.
- W2013399084 hasRelatedWork W1985165680 @default.
- W2013399084 hasRelatedWork W1990817968 @default.
- W2013399084 hasRelatedWork W2026512611 @default.
- W2013399084 hasRelatedWork W2090507606 @default.
- W2013399084 hasRelatedWork W2099629705 @default.
- W2013399084 hasRelatedWork W2353146130 @default.
- W2013399084 hasRelatedWork W4245497162 @default.
- W2013399084 hasRelatedWork W2185094550 @default.
- W2013399084 hasVolume "88" @default.
- W2013399084 isParatext "false" @default.
- W2013399084 isRetracted "false" @default.
- W2013399084 magId "2013399084" @default.