Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013405087> ?p ?o ?g. }
- W2013405087 endingPage "795" @default.
- W2013405087 startingPage "778" @default.
- W2013405087 abstract "We report a comprehensive series of measurements made on the masses of $L$-mesons produced by the 184-inch cyclotron. A general ratio principle of measurement is employed which largely eliminates systematic errors. The particular method that we have developed is described in detail. The theory of nonequilibrium particle orbits in the cyclotron field is worked out to provide formulas from which momenta may be calculated, and to obtain the momentum distribution functions determined by the target and detector dimensions. The energy-loss processes in nuclear track emulsion, which is used as a stopping material and detector, are studied and the range-momentum exponent $q$ is found. Several small corrections to the mean range are made. A number of range straggling effects are evaluated. The theoretical distribution of the quantity $R{p}^{ensuremath{-}q}$ ($R$ being the range and $p$ the momentum) is studied, and the first three moments of the distribution are calculated explicitly. The distribution is found to be closely gaussian. From the theory of the distribution of $R{p}^{ensuremath{-}q}$, the best estimate and the statistical uncertainty of the mass ratio (e.g., of meson to proton) are evaluated. A number of effects influencing the ratio are studied, but all the corrections found are very small. The measurement of the momentum acquired by the muon when a pion decays has also been treated. Several important relations connecting this quantity with the particle masses are then introduced. Apparatus developed for the application of the ratio principle is described. A number of experiments in which mesons and protons of similar velocities were detected in the same nuclear track plate are reported. Each experiment was repeated a number of times. The measurements of particle ranges and orbit parameters, the magnetic field measurements, the dimensional tolerances, the calculations, and other important details are discussed.The following mass ratios are reported: $frac{{ensuremath{pi}}^{+}}{mathrm{proton}}={0.1488}_{7}ifmmodepmelsetextpmfi{}0.00011$, $frac{{ensuremath{pi}}^{ensuremath{-}}}{{ensuremath{pi}}^{+}}=0.998ifmmodepmelsetextpmfi{}0.002$, $frac{{ensuremath{pi}}^{+}}{{ensuremath{mu}}^{+}}=1.321ifmmodepmelsetextpmfi{}0.002$. The center-of-mass momentum acquired by the muon in positive pion decay was measured as 29.80ifmmodepmelsetextpmfi{}0.04 Mev/c and its energy, 4.12ifmmodepmelsetextpmfi{}0.02 Mev. All the results are consistent if the rest mass of the neutral particle in the pion decay is zero. With this assumption, the measurements further imply that the positive pion-muon mass difference is 66.41ifmmodepmelsetextpmfi{}0.07 electron masses. The derived masses, in units of the electron mass, are: ${ensuremath{pi}}^{+}=273.3ifmmodepmelsetextpmfi{}0.2$, ${ensuremath{pi}}^{ensuremath{-}}=272.8ifmmodepmelsetextpmfi{}0.3$, ${ensuremath{mu}}^{+}=206.9ifmmodepmelsetextpmfi{}0.2$." @default.
- W2013405087 created "2016-06-24" @default.
- W2013405087 creator A5056228243 @default.
- W2013405087 creator A5060310564 @default.
- W2013405087 creator A5077980539 @default.
- W2013405087 date "1956-01-15" @default.
- W2013405087 modified "2023-10-09" @default.
- W2013405087 title "Mass-Ratio Method Applied to the Measurement of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>L</mml:mi></mml:math>-Meson Masses and the Energy Balance in Pion Decay" @default.
- W2013405087 cites W1964546578 @default.
- W2013405087 cites W1976209714 @default.
- W2013405087 cites W1978048655 @default.
- W2013405087 cites W1980394936 @default.
- W2013405087 cites W1983665165 @default.
- W2013405087 cites W1993403454 @default.
- W2013405087 cites W1997883019 @default.
- W2013405087 cites W2002409807 @default.
- W2013405087 cites W2005245942 @default.
- W2013405087 cites W2008515852 @default.
- W2013405087 cites W2014282679 @default.
- W2013405087 cites W2030046347 @default.
- W2013405087 cites W2032686888 @default.
- W2013405087 cites W2033171628 @default.
- W2013405087 cites W2037241265 @default.
- W2013405087 cites W2040764150 @default.
- W2013405087 cites W2040822895 @default.
- W2013405087 cites W2041478403 @default.
- W2013405087 cites W2043373874 @default.
- W2013405087 cites W2044591784 @default.
- W2013405087 cites W2044658215 @default.
- W2013405087 cites W2045306964 @default.
- W2013405087 cites W2046606130 @default.
- W2013405087 cites W2048806928 @default.
- W2013405087 cites W2055653730 @default.
- W2013405087 cites W2058240806 @default.
- W2013405087 cites W2060766783 @default.
- W2013405087 cites W2065544384 @default.
- W2013405087 cites W2065943358 @default.
- W2013405087 cites W2073940037 @default.
- W2013405087 cites W2075197364 @default.
- W2013405087 cites W2076014314 @default.
- W2013405087 cites W2086073143 @default.
- W2013405087 cites W2089126560 @default.
- W2013405087 cites W2090462638 @default.
- W2013405087 cites W2093197486 @default.
- W2013405087 cites W2104755848 @default.
- W2013405087 cites W2238284531 @default.
- W2013405087 cites W2241076142 @default.
- W2013405087 cites W2268991105 @default.
- W2013405087 cites W2273706067 @default.
- W2013405087 cites W2285547842 @default.
- W2013405087 cites W2312459307 @default.
- W2013405087 cites W2476613643 @default.
- W2013405087 cites W4211154202 @default.
- W2013405087 cites W4235294700 @default.
- W2013405087 cites W613565836 @default.
- W2013405087 doi "https://doi.org/10.1103/physrev.101.778" @default.
- W2013405087 hasPublicationYear "1956" @default.
- W2013405087 type Work @default.
- W2013405087 sameAs 2013405087 @default.
- W2013405087 citedByCount "229" @default.
- W2013405087 countsByYear W20134050872012 @default.
- W2013405087 countsByYear W20134050872013 @default.
- W2013405087 countsByYear W20134050872014 @default.
- W2013405087 countsByYear W20134050872015 @default.
- W2013405087 countsByYear W20134050872016 @default.
- W2013405087 countsByYear W20134050872017 @default.
- W2013405087 countsByYear W20134050872018 @default.
- W2013405087 countsByYear W20134050872019 @default.
- W2013405087 countsByYear W20134050872020 @default.
- W2013405087 countsByYear W20134050872021 @default.
- W2013405087 countsByYear W20134050872022 @default.
- W2013405087 countsByYear W20134050872023 @default.
- W2013405087 crossrefType "journal-article" @default.
- W2013405087 hasAuthorship W2013405087A5056228243 @default.
- W2013405087 hasAuthorship W2013405087A5060310564 @default.
- W2013405087 hasAuthorship W2013405087A5077980539 @default.
- W2013405087 hasConcept C10138342 @default.
- W2013405087 hasConcept C109214941 @default.
- W2013405087 hasConcept C110121322 @default.
- W2013405087 hasConcept C121332964 @default.
- W2013405087 hasConcept C134306372 @default.
- W2013405087 hasConcept C138885662 @default.
- W2013405087 hasConcept C154153549 @default.
- W2013405087 hasConcept C159985019 @default.
- W2013405087 hasConcept C162324750 @default.
- W2013405087 hasConcept C163716315 @default.
- W2013405087 hasConcept C185544564 @default.
- W2013405087 hasConcept C192562407 @default.
- W2013405087 hasConcept C200006409 @default.
- W2013405087 hasConcept C204323151 @default.
- W2013405087 hasConcept C205334942 @default.
- W2013405087 hasConcept C206094082 @default.
- W2013405087 hasConcept C2780388253 @default.
- W2013405087 hasConcept C33923547 @default.
- W2013405087 hasConcept C41895202 @default.
- W2013405087 hasConcept C54516573 @default.
- W2013405087 hasConcept C60718061 @default.
- W2013405087 hasConcept C62520636 @default.