Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013535741> ?p ?o ?g. }
- W2013535741 endingPage "4737" @default.
- W2013535741 startingPage "4716" @default.
- W2013535741 abstract "A new approach to the fully self-consistent solution of the one-particle equations in a periodic solid within the Hohenberg-Kohn-Sham local-density-functional formalism is presented. The method is based on systematic extensions of non-self-consistent real-space techniques of Ellis, Painter, and collaborators and the self-consistent reciprocal-space methodologies of Chaney, Lin, Lafon, and co-workers. Specifically, our approach combines a discrete variational treatment of all potential terms (Coulomb, exchange, and correlation) arising from the superposition of spherical atomiclike overlapping charge densities, with a rapidly convergent three-dimensional Fourier series representation of all the multicenter potential terms that are not expressible by a superposition model. The basis set consists of the exact numerical valence orbitals obtained from a direct solution of the local-density atomic one-particle equations and (for increased variational freedom) virtual numerical atomic orbitals, charge-transfer (ion-pair) orbitals, and free Slater one-site functions. The initial crystal potential consists of a non-muffin-tin superposition potential, including nongradient free-electron correlation terms calculated beyond the random-phase approximation. The usual multicenter integrations encountered in the linear-combination-of-atomic-orbitals tight-binding formalism are avoided by calculating all the Hamiltonian and other matrix elements between Bloch states by three-dimensional numerical Diophantine integration. In the first stage of self-consistency, the atomic superposition potential and the corresponding numerical basis orbitals are modified simultaneously and nonlinearly by varying (iteratively) the atomic occupation numbers (on the basis of computed Brillouin-zone averaged band populations) so as to minimize the deviation, $ensuremath{Delta}ensuremath{rho}(stackrel{ensuremath{rightarrow}}{mathrm{r}})$, between the band charge density and the superposition charge density. This step produces the best atomic configuration within the superposition model for the crystal charge density and tends to remove all the sharp localized features in the function $ensuremath{Delta}ensuremath{rho}(stackrel{ensuremath{rightarrow}}{mathrm{r}})$ by allowing for intra-atomic charge redistribution to take place. In the second stage, the three-dimensional multicenter Poisson equation associated with $ensuremath{Delta}ensuremath{rho}(stackrel{ensuremath{rightarrow}}{mathrm{r}})$ through a Fourier series representation of $ensuremath{Delta}ensuremath{rho}(stackrel{ensuremath{rightarrow}}{mathrm{r}})$ is solved and solutions of the band problem are found using a self-consistent criterion on the Fourier coefficients of $ensuremath{Delta}ensuremath{rho}(stackrel{ensuremath{rightarrow}}{mathrm{r}})$. The calculated observables include the total crystal ground-state energy, equilibrium lattice constants, electronic pressure, x-ray scattering factors, and directional Compton profile. The efficiency and reliability of the method is illustrated by means of results obtained for some ground-state properties of diamond; comparisons are made with the predictions of other methods." @default.
- W2013535741 created "2016-06-24" @default.
- W2013535741 creator A5007886751 @default.
- W2013535741 creator A5010664564 @default.
- W2013535741 date "1977-05-15" @default.
- W2013535741 modified "2023-09-23" @default.
- W2013535741 title "Self-consistent numerical-basis-set linear-combination-of-atomic-orbitals model for the study of solids in the local density formalism" @default.
- W2013535741 cites W1608773009 @default.
- W2013535741 cites W1650728208 @default.
- W2013535741 cites W1840376913 @default.
- W2013535741 cites W1968666665 @default.
- W2013535741 cites W1969330675 @default.
- W2013535741 cites W1969480435 @default.
- W2013535741 cites W1971054911 @default.
- W2013535741 cites W1971207896 @default.
- W2013535741 cites W1972413557 @default.
- W2013535741 cites W1972481940 @default.
- W2013535741 cites W1973304084 @default.
- W2013535741 cites W1975811743 @default.
- W2013535741 cites W1985950820 @default.
- W2013535741 cites W1986046658 @default.
- W2013535741 cites W1989940871 @default.
- W2013535741 cites W1992183586 @default.
- W2013535741 cites W1993678726 @default.
- W2013535741 cites W1994893090 @default.
- W2013535741 cites W1996057307 @default.
- W2013535741 cites W2000371927 @default.
- W2013535741 cites W2002922736 @default.
- W2013535741 cites W2004442790 @default.
- W2013535741 cites W2007833105 @default.
- W2013535741 cites W2013769944 @default.
- W2013535741 cites W2015897980 @default.
- W2013535741 cites W2020999060 @default.
- W2013535741 cites W2024039605 @default.
- W2013535741 cites W2024496633 @default.
- W2013535741 cites W2030976617 @default.
- W2013535741 cites W2034012741 @default.
- W2013535741 cites W2035564390 @default.
- W2013535741 cites W2035595897 @default.
- W2013535741 cites W2036113194 @default.
- W2013535741 cites W2038073834 @default.
- W2013535741 cites W2038496679 @default.
- W2013535741 cites W2039003970 @default.
- W2013535741 cites W2040795174 @default.
- W2013535741 cites W2052921398 @default.
- W2013535741 cites W2055230539 @default.
- W2013535741 cites W2055474548 @default.
- W2013535741 cites W2060368090 @default.
- W2013535741 cites W2061401141 @default.
- W2013535741 cites W2061628564 @default.
- W2013535741 cites W2066730086 @default.
- W2013535741 cites W2066799078 @default.
- W2013535741 cites W2068545028 @default.
- W2013535741 cites W2069026416 @default.
- W2013535741 cites W2070271524 @default.
- W2013535741 cites W2071827078 @default.
- W2013535741 cites W2075699404 @default.
- W2013535741 cites W2079922386 @default.
- W2013535741 cites W2080739826 @default.
- W2013535741 cites W2081033986 @default.
- W2013535741 cites W2084394624 @default.
- W2013535741 cites W2086628812 @default.
- W2013535741 cites W2086883350 @default.
- W2013535741 cites W2087578058 @default.
- W2013535741 cites W2089261728 @default.
- W2013535741 cites W2094365399 @default.
- W2013535741 cites W2094571885 @default.
- W2013535741 cites W2094611227 @default.
- W2013535741 cites W2095141518 @default.
- W2013535741 cites W2103877450 @default.
- W2013535741 cites W2105564187 @default.
- W2013535741 cites W2159993034 @default.
- W2013535741 cites W2166603673 @default.
- W2013535741 cites W2230728100 @default.
- W2013535741 cites W4210981797 @default.
- W2013535741 cites W4253825506 @default.
- W2013535741 doi "https://doi.org/10.1103/physrevb.15.4716" @default.
- W2013535741 hasPublicationYear "1977" @default.
- W2013535741 type Work @default.
- W2013535741 sameAs 2013535741 @default.
- W2013535741 citedByCount "136" @default.
- W2013535741 countsByYear W20135357412013 @default.
- W2013535741 countsByYear W20135357412014 @default.
- W2013535741 countsByYear W20135357412015 @default.
- W2013535741 countsByYear W20135357412016 @default.
- W2013535741 countsByYear W20135357412017 @default.
- W2013535741 countsByYear W20135357412020 @default.
- W2013535741 countsByYear W20135357412021 @default.
- W2013535741 countsByYear W20135357412022 @default.
- W2013535741 crossrefType "journal-article" @default.
- W2013535741 hasAuthorship W2013535741A5007886751 @default.
- W2013535741 hasAuthorship W2013535741A5010664564 @default.
- W2013535741 hasConcept C121332964 @default.
- W2013535741 hasConcept C147120987 @default.
- W2013535741 hasConcept C150279259 @default.
- W2013535741 hasConcept C152365726 @default.
- W2013535741 hasConcept C184779094 @default.
- W2013535741 hasConcept C189394030 @default.