Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013539042> ?p ?o ?g. }
- W2013539042 endingPage "480" @default.
- W2013539042 startingPage "468" @default.
- W2013539042 abstract "We construct a nonlinear Lagrangian to describe the scalar and pseudoscalar mesons such that the chiral SU(3) ifmmodetimeselsetexttimesfi{} SU(3) symmetry is realized by an octet of Goldstone pseudoscalar mesons while the scalar particles behave neither as parity partners of the pseudoscalar mesons nor as Goldstone bosons in the SU(3) ifmmodetimeselsetexttimesfi{} SU(3)-symmetry limit. The symmetry-breaking Lagrangian is assumed to transform as the $(3,overline{3})+(overline{3},3)$ representation of the SU(3) ifmmodetimeselsetexttimesfi{} SU(3) group and contain explicit SU(3) - and SU(2)-violating terms. The transformation properties of the scalar fields together with these breaking terms in the Lagrangian enable our model to have an SU(3) -broken vacuum. We exhibit the masses of the scalar and pseudoscalar particles as well as the decay constants defining PCAC (partial conservation of axial-vector current) and PCVC (partial conservation of vector current) relations in terms of the parameters of the model, and obtain various well-known relationships (including the Glashow-Weinberg sum rules) between the physical quantities. The smoothness assumption is shown to imply approximate SU(2) ifmmodetimeselsetexttimesfi{} SU(2) symmetry of the Lagrangian with a small SU(3) violation in the vacuum (Gell-Mann-Oakes-Renner model), while an appropriate change in the smoothness assumption leads to approximate SU(3) symmetry of the Lagrangian with an almost SU(2) ifmmodetimeselsetexttimesfi{} SU(2) -invariant vacuum (Brandt-Preparata model). We calculate the symmetry-breaking parameters of the Lagrangian and vacuum and predict the mass and decay constant of the $ensuremath{kappa}$ meson. Furthermore, from the width of the decay ${ensuremath{pi}}_{N}ensuremath{rightarrow}ensuremath{eta}ensuremath{pi}$, we obtain the decay widths of all the scalar mesons. Finally, we investigate the nonelectromagnetic SU(2) breaking and find that it gives a major contribution to the kaon mass difference but only a 5% correction to the pion mass difference. The fact that the scalar mesons are needed to get ${f}_{K}ensuremath{ne}{f}_{ensuremath{pi}}$ and different wave-function renormalization constants for the fields, which enables us to have solutions other than that of Gell-Mann, Oakes, and Renner, demonstrates the importance of the scalar mesons in SU(3)-symmetry-breaking effects." @default.
- W2013539042 created "2016-06-24" @default.
- W2013539042 creator A5004317349 @default.
- W2013539042 creator A5075269830 @default.
- W2013539042 date "1973-07-15" @default.
- W2013539042 modified "2023-09-23" @default.
- W2013539042 title "Generalized Nonlinear Lagrangian for Pseudoscalar and Scalar Mesons" @default.
- W2013539042 cites W1485953332 @default.
- W2013539042 cites W1966348236 @default.
- W2013539042 cites W1969357047 @default.
- W2013539042 cites W1975136653 @default.
- W2013539042 cites W1977988701 @default.
- W2013539042 cites W1981199129 @default.
- W2013539042 cites W1982153428 @default.
- W2013539042 cites W1983068348 @default.
- W2013539042 cites W1990834676 @default.
- W2013539042 cites W1991892641 @default.
- W2013539042 cites W1992054246 @default.
- W2013539042 cites W1993016312 @default.
- W2013539042 cites W1994544384 @default.
- W2013539042 cites W1999806776 @default.
- W2013539042 cites W2000161915 @default.
- W2013539042 cites W2003277035 @default.
- W2013539042 cites W2003387688 @default.
- W2013539042 cites W2004270375 @default.
- W2013539042 cites W2005935750 @default.
- W2013539042 cites W2007121966 @default.
- W2013539042 cites W2007158088 @default.
- W2013539042 cites W2008173522 @default.
- W2013539042 cites W2009842145 @default.
- W2013539042 cites W2016611922 @default.
- W2013539042 cites W2018603564 @default.
- W2013539042 cites W2026970515 @default.
- W2013539042 cites W2028786733 @default.
- W2013539042 cites W2029771121 @default.
- W2013539042 cites W2033304810 @default.
- W2013539042 cites W2039258454 @default.
- W2013539042 cites W2041088699 @default.
- W2013539042 cites W2047481525 @default.
- W2013539042 cites W2050354521 @default.
- W2013539042 cites W2055722245 @default.
- W2013539042 cites W2055931481 @default.
- W2013539042 cites W2057121116 @default.
- W2013539042 cites W2057986076 @default.
- W2013539042 cites W2059002814 @default.
- W2013539042 cites W2059080173 @default.
- W2013539042 cites W2060444346 @default.
- W2013539042 cites W2063414061 @default.
- W2013539042 cites W2065053334 @default.
- W2013539042 cites W2067160497 @default.
- W2013539042 cites W2069605295 @default.
- W2013539042 cites W2089138083 @default.
- W2013539042 cites W2091521733 @default.
- W2013539042 cites W2091829572 @default.
- W2013539042 cites W2107473311 @default.
- W2013539042 cites W2147159320 @default.
- W2013539042 cites W2155130335 @default.
- W2013539042 cites W2165991357 @default.
- W2013539042 cites W2173105418 @default.
- W2013539042 cites W2173932345 @default.
- W2013539042 cites W2201735550 @default.
- W2013539042 cites W2223561337 @default.
- W2013539042 cites W2226963368 @default.
- W2013539042 cites W2227740876 @default.
- W2013539042 cites W2315773455 @default.
- W2013539042 cites W2567625836 @default.
- W2013539042 cites W2802344020 @default.
- W2013539042 cites W2805535583 @default.
- W2013539042 cites W2986991076 @default.
- W2013539042 cites W3022653048 @default.
- W2013539042 cites W3147258509 @default.
- W2013539042 cites W3149952752 @default.
- W2013539042 cites W4234107866 @default.
- W2013539042 cites W4236575607 @default.
- W2013539042 doi "https://doi.org/10.1103/physrevd.8.468" @default.
- W2013539042 hasPublicationYear "1973" @default.
- W2013539042 type Work @default.
- W2013539042 sameAs 2013539042 @default.
- W2013539042 citedByCount "1" @default.
- W2013539042 crossrefType "journal-article" @default.
- W2013539042 hasAuthorship W2013539042A5004317349 @default.
- W2013539042 hasAuthorship W2013539042A5075269830 @default.
- W2013539042 hasConcept C101583263 @default.
- W2013539042 hasConcept C109214941 @default.
- W2013539042 hasConcept C121332964 @default.
- W2013539042 hasConcept C151389596 @default.
- W2013539042 hasConcept C200006409 @default.
- W2013539042 hasConcept C204795200 @default.
- W2013539042 hasConcept C2524010 @default.
- W2013539042 hasConcept C33923547 @default.
- W2013539042 hasConcept C37914503 @default.
- W2013539042 hasConcept C44306375 @default.
- W2013539042 hasConcept C57691317 @default.
- W2013539042 hasConceptScore W2013539042C101583263 @default.
- W2013539042 hasConceptScore W2013539042C109214941 @default.
- W2013539042 hasConceptScore W2013539042C121332964 @default.
- W2013539042 hasConceptScore W2013539042C151389596 @default.
- W2013539042 hasConceptScore W2013539042C200006409 @default.