Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013772357> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2013772357 abstract "Numerous high performance machine learning algorithms are designed based on human learning, while human learning can also acquire elicitation from machine learning to investigate highly efficient learning process. This paper presents two iteratively error correcting based probabilistic neural networks (PNN) for connecting human learning and machine learning. C-PNN, G-PNN and G-PNN have been used to delete redundancy samples in our learning software based on question bank. In detail, we propose a recommendation approach of learning samples which selects samples according to density of knowledge points through calculating data field of knowledge points covered by problems. The approach also deletes redundant problems in order to deal with the question-sea tactical and remedy the defects of random selecting usually used in human learning." @default.
- W2013772357 created "2016-06-24" @default.
- W2013772357 creator A5015079616 @default.
- W2013772357 creator A5041669276 @default.
- W2013772357 creator A5073435392 @default.
- W2013772357 creator A5081428042 @default.
- W2013772357 date "2013-07-01" @default.
- W2013772357 modified "2023-09-24" @default.
- W2013772357 title "Elicitation of machine learning to human learning from iterative error correcting" @default.
- W2013772357 cites W2096459875 @default.
- W2013772357 cites W2100128988 @default.
- W2013772357 cites W2113478851 @default.
- W2013772357 cites W2120848709 @default.
- W2013772357 cites W2123713131 @default.
- W2013772357 cites W2166493072 @default.
- W2013772357 cites W2171563677 @default.
- W2013772357 cites W2327182611 @default.
- W2013772357 cites W2369673217 @default.
- W2013772357 cites W2388005404 @default.
- W2013772357 doi "https://doi.org/10.1109/icmlc.2013.6890473" @default.
- W2013772357 hasPublicationYear "2013" @default.
- W2013772357 type Work @default.
- W2013772357 sameAs 2013772357 @default.
- W2013772357 citedByCount "0" @default.
- W2013772357 crossrefType "proceedings-article" @default.
- W2013772357 hasAuthorship W2013772357A5015079616 @default.
- W2013772357 hasAuthorship W2013772357A5041669276 @default.
- W2013772357 hasAuthorship W2013772357A5073435392 @default.
- W2013772357 hasAuthorship W2013772357A5081428042 @default.
- W2013772357 hasConcept C111919701 @default.
- W2013772357 hasConcept C115903097 @default.
- W2013772357 hasConcept C119857082 @default.
- W2013772357 hasConcept C152124472 @default.
- W2013772357 hasConcept C154945302 @default.
- W2013772357 hasConcept C24138899 @default.
- W2013772357 hasConcept C41008148 @default.
- W2013772357 hasConcept C49937458 @default.
- W2013772357 hasConcept C50644808 @default.
- W2013772357 hasConcept C58973888 @default.
- W2013772357 hasConcept C77967617 @default.
- W2013772357 hasConcept C98045186 @default.
- W2013772357 hasConceptScore W2013772357C111919701 @default.
- W2013772357 hasConceptScore W2013772357C115903097 @default.
- W2013772357 hasConceptScore W2013772357C119857082 @default.
- W2013772357 hasConceptScore W2013772357C152124472 @default.
- W2013772357 hasConceptScore W2013772357C154945302 @default.
- W2013772357 hasConceptScore W2013772357C24138899 @default.
- W2013772357 hasConceptScore W2013772357C41008148 @default.
- W2013772357 hasConceptScore W2013772357C49937458 @default.
- W2013772357 hasConceptScore W2013772357C50644808 @default.
- W2013772357 hasConceptScore W2013772357C58973888 @default.
- W2013772357 hasConceptScore W2013772357C77967617 @default.
- W2013772357 hasConceptScore W2013772357C98045186 @default.
- W2013772357 hasLocation W20137723571 @default.
- W2013772357 hasOpenAccess W2013772357 @default.
- W2013772357 hasPrimaryLocation W20137723571 @default.
- W2013772357 hasRelatedWork W1519376421 @default.
- W2013772357 hasRelatedWork W1530390892 @default.
- W2013772357 hasRelatedWork W2092287068 @default.
- W2013772357 hasRelatedWork W2106495833 @default.
- W2013772357 hasRelatedWork W2168335549 @default.
- W2013772357 hasRelatedWork W2396874021 @default.
- W2013772357 hasRelatedWork W2548163443 @default.
- W2013772357 hasRelatedWork W2887108772 @default.
- W2013772357 hasRelatedWork W2910744507 @default.
- W2013772357 hasRelatedWork W2941320171 @default.
- W2013772357 hasRelatedWork W2977507616 @default.
- W2013772357 hasRelatedWork W2984921342 @default.
- W2013772357 hasRelatedWork W3003586324 @default.
- W2013772357 hasRelatedWork W3014709894 @default.
- W2013772357 hasRelatedWork W3047573707 @default.
- W2013772357 hasRelatedWork W3133144456 @default.
- W2013772357 hasRelatedWork W3151213167 @default.
- W2013772357 hasRelatedWork W3170357465 @default.
- W2013772357 hasRelatedWork W3197492703 @default.
- W2013772357 hasRelatedWork W3202958740 @default.
- W2013772357 isParatext "false" @default.
- W2013772357 isRetracted "false" @default.
- W2013772357 magId "2013772357" @default.
- W2013772357 workType "article" @default.