Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013902001> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2013902001 abstract "In recent years, wireless sensor networks (WSNs) are extensively used in environment monitoring applications. It is paramount that data from these sensors be reliable since it could be used for critical decision making. However the data acquired is typically not usable directly as it suffers from noise, missing data and incompleteness. When the dimensionality of the collected data is lower than its actual dimensionality, the correspondence relationship between dimensions and their associated values is lost resulting in dimension incomplete problem. Querying incomplete databases has gained substantial research interests. Many techniques are being proposed to deal with incomplete databases by estimating and replacing missing sensor values using a well-suited statistical imputation technique. Some of the methods which are applicable to impute missing data in sensor readings are WARM (Window Association Rule Mining), AKE (Applying K-nearest Neighbor Estimation) however these methods are used as avoidance methods, which detect the presence of incomplete data and impute the value for the missing value before storing the data into the database, to further avoid querying dimension incomplete databases. No substantial research has been focused to deal with missing values present in the existing databases. Querying such dimension incomplete databases could lead to obtaining incomplete results. Considering this limitation this paper proposes to incorporate the above avoidance methods as a part of searching dimension incomplete databases and also proposes newer version to the existing WARM method. The advantage of the proposed approach is that the result of the user query will always have complete and accurate data." @default.
- W2013902001 created "2016-06-24" @default.
- W2013902001 creator A5010773901 @default.
- W2013902001 creator A5029121661 @default.
- W2013902001 date "2014-05-01" @default.
- W2013902001 modified "2023-10-16" @default.
- W2013902001 title "Determining missing values in dimension incomplete databases using spatial-temporal correlation techniques" @default.
- W2013902001 cites W1502972690 @default.
- W2013902001 cites W2031668066 @default.
- W2013902001 cites W2049633694 @default.
- W2013902001 cites W2068331431 @default.
- W2013902001 cites W2070807660 @default.
- W2013902001 cites W2122904721 @default.
- W2013902001 cites W2159401492 @default.
- W2013902001 cites W2169712975 @default.
- W2013902001 cites W61939961 @default.
- W2013902001 doi "https://doi.org/10.1109/icaccct.2014.7019157" @default.
- W2013902001 hasPublicationYear "2014" @default.
- W2013902001 type Work @default.
- W2013902001 sameAs 2013902001 @default.
- W2013902001 citedByCount "2" @default.
- W2013902001 countsByYear W20139020012015 @default.
- W2013902001 crossrefType "proceedings-article" @default.
- W2013902001 hasAuthorship W2013902001A5010773901 @default.
- W2013902001 hasAuthorship W2013902001A5029121661 @default.
- W2013902001 hasConcept C111030470 @default.
- W2013902001 hasConcept C119857082 @default.
- W2013902001 hasConcept C124101348 @default.
- W2013902001 hasConcept C136764020 @default.
- W2013902001 hasConcept C202444582 @default.
- W2013902001 hasConcept C2780615836 @default.
- W2013902001 hasConcept C33676613 @default.
- W2013902001 hasConcept C33923547 @default.
- W2013902001 hasConcept C41008148 @default.
- W2013902001 hasConcept C5655090 @default.
- W2013902001 hasConcept C58041806 @default.
- W2013902001 hasConcept C77088390 @default.
- W2013902001 hasConcept C9357733 @default.
- W2013902001 hasConceptScore W2013902001C111030470 @default.
- W2013902001 hasConceptScore W2013902001C119857082 @default.
- W2013902001 hasConceptScore W2013902001C124101348 @default.
- W2013902001 hasConceptScore W2013902001C136764020 @default.
- W2013902001 hasConceptScore W2013902001C202444582 @default.
- W2013902001 hasConceptScore W2013902001C2780615836 @default.
- W2013902001 hasConceptScore W2013902001C33676613 @default.
- W2013902001 hasConceptScore W2013902001C33923547 @default.
- W2013902001 hasConceptScore W2013902001C41008148 @default.
- W2013902001 hasConceptScore W2013902001C5655090 @default.
- W2013902001 hasConceptScore W2013902001C58041806 @default.
- W2013902001 hasConceptScore W2013902001C77088390 @default.
- W2013902001 hasConceptScore W2013902001C9357733 @default.
- W2013902001 hasLocation W20139020011 @default.
- W2013902001 hasOpenAccess W2013902001 @default.
- W2013902001 hasPrimaryLocation W20139020011 @default.
- W2013902001 hasRelatedWork W178555045 @default.
- W2013902001 hasRelatedWork W1973721774 @default.
- W2013902001 hasRelatedWork W2013902001 @default.
- W2013902001 hasRelatedWork W2541565311 @default.
- W2013902001 hasRelatedWork W2574666645 @default.
- W2013902001 hasRelatedWork W2751555317 @default.
- W2013902001 hasRelatedWork W3028371478 @default.
- W2013902001 hasRelatedWork W3049453136 @default.
- W2013902001 hasRelatedWork W3179858851 @default.
- W2013902001 hasRelatedWork W569810835 @default.
- W2013902001 isParatext "false" @default.
- W2013902001 isRetracted "false" @default.
- W2013902001 magId "2013902001" @default.
- W2013902001 workType "article" @default.