Matches in SemOpenAlex for { <https://semopenalex.org/work/W2013994990> ?p ?o ?g. }
- W2013994990 endingPage "3311" @default.
- W2013994990 startingPage "3293" @default.
- W2013994990 abstract "In photosynthetic light-harvesting systems carotenoids and chlorophylls jointly absorb light and transform its energy within about a picosecond into electronic singlet excitations of the chlorophylls only. This paper investigates this process for the light-harvesting complex II of the purple bacterium Rhodospirillum molischianum, for which a structure and, hence, the exact arrangement of the participating bacteriochlorophylls and carotenoids have recently become known. Based on this structure and on CI expansions of the electronic states of individual chromophores (bacteriochlorophylls and carotenoids) as well as on an exciton description of a circular aggregate of bacteriochlorophylls, the excitation transfer between carotenoids and bacteriochlorophylls is described by means of Fermi's golden rule. The electronic coupling between the various electronic excitations is determined for all orders of multipoles (Coulomb mechanism) and includes the electron exchange (Dexter mechanism) term. The rates and efficiencies for different pathways of excitation transfer, e.g., ${1}^{1}{B}_{u}^{+}(mathrm{carotenoid})ensuremath{rightarrow}mathrm{bacteriochlorophyll}$ aggregate and ${2}^{1}{A}_{g}^{ensuremath{-}}(mathrm{carotenoid})ensuremath{rightarrow}mathrm{}mathrm{bacteriochlorophyll}$ aggregate, are compared. The results show that in LH-II the Coulomb mechanism is dominant for the transfer of singlet excitations. The ${1}^{1}{B}_{u}^{+}ensuremath{rightarrow}{Q}_{x}$ pathway appears to be partially efficient, while the ${2}^{1}{A}_{g}^{ensuremath{-}}ensuremath{rightarrow}{Q}_{y}$ pathway, in our description, which does not include vibrational levels, is inefficient. An improved treatment of the excitation transfer from the ${2}^{1}{A}_{g}^{ensuremath{-}}$ state is required to account for observed transfer rates. Exciton splitting of bacteriochlorophyll ${Q}_{y}$ excitations slightly accelerates the excitation transfer from the ${2}^{1}{A}_{g}^{ensuremath{-}}$ state, while it plays a crucial role in accelerating the transfer from the $B800mathrm{BChl}{Q}_{y}$ state. Photoprotection of bacteriochlorophylls through triplet quenching is investigated, too. The results suggest that eight of the $16B850$ bacteriochlorophylls in LH-II of Rhodospirillum molischianum are protected well by eight carotenoids observed in the x-ray structure of the protein. The remaining eight $B850$ bacteriochlorophylls can transfer their triplet excitation energy efficiently to their neighboring protected bacteriochlorophylls. Eight $B800$ bacteriochlorophylls appear not to be protected well by the observed carotenoids." @default.
- W2013994990 created "2016-06-24" @default.
- W2013994990 creator A5001305570 @default.
- W2013994990 creator A5018489999 @default.
- W2013994990 creator A5029996336 @default.
- W2013994990 date "1999-03-01" @default.
- W2013994990 modified "2023-10-16" @default.
- W2013994990 title "Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria" @default.
- W2013994990 cites W1968156940 @default.
- W2013994990 cites W1975267028 @default.
- W2013994990 cites W1977688590 @default.
- W2013994990 cites W1977998615 @default.
- W2013994990 cites W1983571758 @default.
- W2013994990 cites W1989107097 @default.
- W2013994990 cites W1990764731 @default.
- W2013994990 cites W1991184612 @default.
- W2013994990 cites W1997963727 @default.
- W2013994990 cites W1999439686 @default.
- W2013994990 cites W2002180204 @default.
- W2013994990 cites W2003729500 @default.
- W2013994990 cites W2009657714 @default.
- W2013994990 cites W2010692961 @default.
- W2013994990 cites W2011060480 @default.
- W2013994990 cites W2012111341 @default.
- W2013994990 cites W2017413749 @default.
- W2013994990 cites W2017627877 @default.
- W2013994990 cites W2022636898 @default.
- W2013994990 cites W2023424614 @default.
- W2013994990 cites W2025024286 @default.
- W2013994990 cites W2025898544 @default.
- W2013994990 cites W2027025292 @default.
- W2013994990 cites W2029667189 @default.
- W2013994990 cites W2031802177 @default.
- W2013994990 cites W2035194469 @default.
- W2013994990 cites W2035579953 @default.
- W2013994990 cites W2039756777 @default.
- W2013994990 cites W2041954720 @default.
- W2013994990 cites W2043334053 @default.
- W2013994990 cites W2044251751 @default.
- W2013994990 cites W2044826024 @default.
- W2013994990 cites W2046596338 @default.
- W2013994990 cites W2047187990 @default.
- W2013994990 cites W2047470530 @default.
- W2013994990 cites W2047992050 @default.
- W2013994990 cites W2048504021 @default.
- W2013994990 cites W2049523796 @default.
- W2013994990 cites W2050491811 @default.
- W2013994990 cites W2050929241 @default.
- W2013994990 cites W2059282210 @default.
- W2013994990 cites W2066515169 @default.
- W2013994990 cites W2073152894 @default.
- W2013994990 cites W2074745057 @default.
- W2013994990 cites W2079048522 @default.
- W2013994990 cites W2079724148 @default.
- W2013994990 cites W2083730521 @default.
- W2013994990 cites W2089078510 @default.
- W2013994990 cites W2094517427 @default.
- W2013994990 cites W2115746098 @default.
- W2013994990 cites W2118345984 @default.
- W2013994990 cites W2129712005 @default.
- W2013994990 cites W2145412238 @default.
- W2013994990 cites W2146818291 @default.
- W2013994990 cites W2147629607 @default.
- W2013994990 cites W2154586643 @default.
- W2013994990 cites W2166099341 @default.
- W2013994990 cites W2170796523 @default.
- W2013994990 cites W2895408343 @default.
- W2013994990 doi "https://doi.org/10.1103/physreve.59.3293" @default.
- W2013994990 hasPublicationYear "1999" @default.
- W2013994990 type Work @default.
- W2013994990 sameAs 2013994990 @default.
- W2013994990 citedByCount "151" @default.
- W2013994990 countsByYear W20139949902012 @default.
- W2013994990 countsByYear W20139949902013 @default.
- W2013994990 countsByYear W20139949902014 @default.
- W2013994990 countsByYear W20139949902015 @default.
- W2013994990 countsByYear W20139949902016 @default.
- W2013994990 countsByYear W20139949902017 @default.
- W2013994990 countsByYear W20139949902018 @default.
- W2013994990 countsByYear W20139949902019 @default.
- W2013994990 countsByYear W20139949902020 @default.
- W2013994990 countsByYear W20139949902021 @default.
- W2013994990 countsByYear W20139949902022 @default.
- W2013994990 countsByYear W20139949902023 @default.
- W2013994990 crossrefType "journal-article" @default.
- W2013994990 hasAuthorship W2013994990A5001305570 @default.
- W2013994990 hasAuthorship W2013994990A5018489999 @default.
- W2013994990 hasAuthorship W2013994990A5029996336 @default.
- W2013994990 hasConcept C121332964 @default.
- W2013994990 hasConcept C123669783 @default.
- W2013994990 hasConcept C147604119 @default.
- W2013994990 hasConcept C159467904 @default.
- W2013994990 hasConcept C17729963 @default.
- W2013994990 hasConcept C181500209 @default.
- W2013994990 hasConcept C183688256 @default.
- W2013994990 hasConcept C184779094 @default.
- W2013994990 hasConcept C185592680 @default.
- W2013994990 hasConcept C192468462 @default.