Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014019713> ?p ?o ?g. }
- W2014019713 endingPage "11897" @default.
- W2014019713 startingPage "11887" @default.
- W2014019713 abstract "Rational design of the hierarchical architecture of a material with well controlled functionality is crucially important for improving its properties. In this paper, we present the general strategies for rationally designing and constructing three types of hierarchical Pd integrated TiO2 double-shell architectures, i.e. yolk–double-shell TiO2 architecture (Pd@TiO2/Pd@TiO2) with yolk-type Pd nanoparticles residing inside the central cavity of the hollow TiO2 structure; ultrafine Pd nanoparticles homogenously dispersed on both the external and internal surfaces of the inner TiO2 shell; and double-shell TiO2 architecture (@TiO2/Pd@TiO2) with Pd nanoparticles solely loaded on the external surface of the inner TiO2 shell, and double-shell TiO2 architecture (@TiO2@Pd@TiO2) with Pd nanoparticles dispersed in the interlayer space of double TiO2 shells, via newly developed Pd2+ ion-diffusion and Pd sol impregnation methodologies. These architectures are well controlled in structure, size, morphology, and configuration with Pd nanoparticles existing in various locations. Owing to the variable synergistic effects arising from the location discrepancies of Pd nanoparticle in the architectures, they exhibit remarkable variations in catalytic activity. In particular, different from previously reported yolk–shell structures, the obtained yolk–double-shell Pd@TiO2/Pd@TiO2 architecture, which is revealed for the first time, possesses a uniform hierarchical structure, narrow size distribution, and good monodispersibility, and it creates two Pd–TiO2 interfaces on the external and internal surfaces of the inner TiO2 shell, leading to the strongest synergistic effect of Pd nanoparticles with TiO2 shell. Furthermore, the interlayer chamber between the double TiO2 shells connecting with the central cavity of the hollow TiO2 structure through the mesoporous TiO2 wall forms a nanoreactor for enriching the reactants and preventing the deletion of Pd nanoparticles during the reaction, thus greatly accelerating the reaction speed. Owing to its structural features, yolk–double-shell Pd@TiO2/Pd@TiO2 architecture exhibits extremely high catalytic performance on the Suzuki–Miyaura coupling reaction. The synthetic methodologies are robust for fabricating double-shell architectures with various configurations for applications such as in catalysis, drug delivery, and medicine release. The obtained double-shell architectures may be used as novel catalyst systems with highly efficient catalytic performance for other catalytic reactions." @default.
- W2014019713 created "2016-06-24" @default.
- W2014019713 creator A5003009329 @default.
- W2014019713 creator A5049565139 @default.
- W2014019713 creator A5052446612 @default.
- W2014019713 creator A5053357134 @default.
- W2014019713 creator A5065243448 @default.
- W2014019713 creator A5071672663 @default.
- W2014019713 creator A5075009632 @default.
- W2014019713 date "2014-08-05" @default.
- W2014019713 modified "2023-10-06" @default.
- W2014019713 title "Architecture engineering toward highly active palladium integrated titanium dioxide yolk–double-shell nanoreactor for catalytic applications" @default.
- W2014019713 cites W1972406184 @default.
- W2014019713 cites W1972729329 @default.
- W2014019713 cites W1977811697 @default.
- W2014019713 cites W1983632513 @default.
- W2014019713 cites W1984122862 @default.
- W2014019713 cites W1984684964 @default.
- W2014019713 cites W1994217653 @default.
- W2014019713 cites W1996369752 @default.
- W2014019713 cites W2006094420 @default.
- W2014019713 cites W2007670307 @default.
- W2014019713 cites W2007773236 @default.
- W2014019713 cites W2013200143 @default.
- W2014019713 cites W2014589657 @default.
- W2014019713 cites W2020480348 @default.
- W2014019713 cites W2023267789 @default.
- W2014019713 cites W2030207534 @default.
- W2014019713 cites W2034672716 @default.
- W2014019713 cites W2037704631 @default.
- W2014019713 cites W2039940813 @default.
- W2014019713 cites W2041370132 @default.
- W2014019713 cites W2041896577 @default.
- W2014019713 cites W2051553612 @default.
- W2014019713 cites W2051970163 @default.
- W2014019713 cites W2053932347 @default.
- W2014019713 cites W2056922428 @default.
- W2014019713 cites W2058285147 @default.
- W2014019713 cites W2065744294 @default.
- W2014019713 cites W2074646736 @default.
- W2014019713 cites W2110764277 @default.
- W2014019713 cites W2114016611 @default.
- W2014019713 cites W2123276565 @default.
- W2014019713 cites W2124168158 @default.
- W2014019713 cites W2134619481 @default.
- W2014019713 cites W2145767185 @default.
- W2014019713 cites W2154301687 @default.
- W2014019713 cites W2155555634 @default.
- W2014019713 cites W2168288862 @default.
- W2014019713 cites W2316387592 @default.
- W2014019713 cites W2332084198 @default.
- W2014019713 doi "https://doi.org/10.1039/c4nr02692f" @default.
- W2014019713 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25174813" @default.
- W2014019713 hasPublicationYear "2014" @default.
- W2014019713 type Work @default.
- W2014019713 sameAs 2014019713 @default.
- W2014019713 citedByCount "33" @default.
- W2014019713 countsByYear W20140197132015 @default.
- W2014019713 countsByYear W20140197132016 @default.
- W2014019713 countsByYear W20140197132017 @default.
- W2014019713 countsByYear W20140197132018 @default.
- W2014019713 countsByYear W20140197132019 @default.
- W2014019713 countsByYear W20140197132020 @default.
- W2014019713 countsByYear W20140197132022 @default.
- W2014019713 countsByYear W20140197132023 @default.
- W2014019713 crossrefType "journal-article" @default.
- W2014019713 hasAuthorship W2014019713A5003009329 @default.
- W2014019713 hasAuthorship W2014019713A5049565139 @default.
- W2014019713 hasAuthorship W2014019713A5052446612 @default.
- W2014019713 hasAuthorship W2014019713A5053357134 @default.
- W2014019713 hasAuthorship W2014019713A5065243448 @default.
- W2014019713 hasAuthorship W2014019713A5071672663 @default.
- W2014019713 hasAuthorship W2014019713A5075009632 @default.
- W2014019713 hasConcept C127413603 @default.
- W2014019713 hasConcept C155672457 @default.
- W2014019713 hasConcept C159985019 @default.
- W2014019713 hasConcept C161790260 @default.
- W2014019713 hasConcept C171250308 @default.
- W2014019713 hasConcept C178790620 @default.
- W2014019713 hasConcept C185592680 @default.
- W2014019713 hasConcept C190818770 @default.
- W2014019713 hasConcept C192562407 @default.
- W2014019713 hasConcept C2777593239 @default.
- W2014019713 hasConcept C2781052500 @default.
- W2014019713 hasConcept C42360764 @default.
- W2014019713 hasConcept C502130503 @default.
- W2014019713 hasConceptScore W2014019713C127413603 @default.
- W2014019713 hasConceptScore W2014019713C155672457 @default.
- W2014019713 hasConceptScore W2014019713C159985019 @default.
- W2014019713 hasConceptScore W2014019713C161790260 @default.
- W2014019713 hasConceptScore W2014019713C171250308 @default.
- W2014019713 hasConceptScore W2014019713C178790620 @default.
- W2014019713 hasConceptScore W2014019713C185592680 @default.
- W2014019713 hasConceptScore W2014019713C190818770 @default.
- W2014019713 hasConceptScore W2014019713C192562407 @default.
- W2014019713 hasConceptScore W2014019713C2777593239 @default.
- W2014019713 hasConceptScore W2014019713C2781052500 @default.
- W2014019713 hasConceptScore W2014019713C42360764 @default.