Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014158137> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2014158137 abstract "The Artificial Neural Network (ANN) has been used as a predictive tool for the estimation of certain parameters of Subernarekha, an important river in the Jharkhand state in India. The network used two algorithms for this purpose and was sufficiently accurate in predicting the most economically heavy and time-consuming set of data. The Levenberg-Marquardt Backpropagation Network (trainlm) and the Resilient Backpropagation Network (trainrp) were the two algorithms used for the estimation of metallic species and physicochemical parameters of the river. The MAPE for metallic species were found to be 0.71 for cadmium, 0.182 for copper and 0.771 for chromium, while physicochemical parameters were 16.645 for alkalinity, 5.883 for dissolved oxygen (DO) and 23.28 for chemical oxygen demand (COD). Both the algorithms were used with different sets of hidden layers i.e., one for trainlm with 5 neurons and three for trainrp with 5, 4 and 5 neurons, and these were determined using the trial and error method. This method is not only economically favorable but time-adaptive as well, as it depends on the amount and span of data available and it can predict values to a very high degree of accuracy. This method can successfully be employed for the prediction of parameters of any river system with confidence." @default.
- W2014158137 created "2016-06-24" @default.
- W2014158137 creator A5002187701 @default.
- W2014158137 creator A5032760624 @default.
- W2014158137 creator A5049740675 @default.
- W2014158137 creator A5077060918 @default.
- W2014158137 creator A5082850281 @default.
- W2014158137 date "2008-07-08" @default.
- W2014158137 modified "2023-09-24" @default.
- W2014158137 title "Prediction of Various Parameters of a River for Assessment of Water Quality by an Intelligent Technique" @default.
- W2014158137 doi "https://doi.org/10.2202/1934-2659.1181" @default.
- W2014158137 hasPublicationYear "2008" @default.
- W2014158137 type Work @default.
- W2014158137 sameAs 2014158137 @default.
- W2014158137 citedByCount "2" @default.
- W2014158137 countsByYear W20141581372014 @default.
- W2014158137 countsByYear W20141581372022 @default.
- W2014158137 crossrefType "journal-article" @default.
- W2014158137 hasAuthorship W2014158137A5002187701 @default.
- W2014158137 hasAuthorship W2014158137A5032760624 @default.
- W2014158137 hasAuthorship W2014158137A5049740675 @default.
- W2014158137 hasAuthorship W2014158137A5077060918 @default.
- W2014158137 hasAuthorship W2014158137A5082850281 @default.
- W2014158137 hasConcept C111472728 @default.
- W2014158137 hasConcept C127413603 @default.
- W2014158137 hasConcept C138885662 @default.
- W2014158137 hasConcept C18903297 @default.
- W2014158137 hasConcept C21880701 @default.
- W2014158137 hasConcept C2779530757 @default.
- W2014158137 hasConcept C2780797713 @default.
- W2014158137 hasConcept C39432304 @default.
- W2014158137 hasConcept C41008148 @default.
- W2014158137 hasConcept C524765639 @default.
- W2014158137 hasConcept C86803240 @default.
- W2014158137 hasConceptScore W2014158137C111472728 @default.
- W2014158137 hasConceptScore W2014158137C127413603 @default.
- W2014158137 hasConceptScore W2014158137C138885662 @default.
- W2014158137 hasConceptScore W2014158137C18903297 @default.
- W2014158137 hasConceptScore W2014158137C21880701 @default.
- W2014158137 hasConceptScore W2014158137C2779530757 @default.
- W2014158137 hasConceptScore W2014158137C2780797713 @default.
- W2014158137 hasConceptScore W2014158137C39432304 @default.
- W2014158137 hasConceptScore W2014158137C41008148 @default.
- W2014158137 hasConceptScore W2014158137C524765639 @default.
- W2014158137 hasConceptScore W2014158137C86803240 @default.
- W2014158137 hasLocation W20141581371 @default.
- W2014158137 hasOpenAccess W2014158137 @default.
- W2014158137 hasPrimaryLocation W20141581371 @default.
- W2014158137 hasRelatedWork W131105083 @default.
- W2014158137 hasRelatedWork W2128130091 @default.
- W2014158137 hasRelatedWork W2181932025 @default.
- W2014158137 hasRelatedWork W2261606160 @default.
- W2014158137 hasRelatedWork W2348809787 @default.
- W2014158137 hasRelatedWork W2371411111 @default.
- W2014158137 hasRelatedWork W2371557379 @default.
- W2014158137 hasRelatedWork W2372144532 @default.
- W2014158137 hasRelatedWork W2374637866 @default.
- W2014158137 hasRelatedWork W2376221220 @default.
- W2014158137 hasRelatedWork W2384779871 @default.
- W2014158137 hasRelatedWork W2386118727 @default.
- W2014158137 hasRelatedWork W2390171624 @default.
- W2014158137 hasRelatedWork W2501864468 @default.
- W2014158137 hasRelatedWork W2533696799 @default.
- W2014158137 hasRelatedWork W2555716870 @default.
- W2014158137 hasRelatedWork W2896454514 @default.
- W2014158137 hasRelatedWork W2964114832 @default.
- W2014158137 hasRelatedWork W3010612454 @default.
- W2014158137 hasRelatedWork W3133059715 @default.
- W2014158137 isParatext "false" @default.
- W2014158137 isRetracted "false" @default.
- W2014158137 magId "2014158137" @default.
- W2014158137 workType "article" @default.