Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014179916> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2014179916 endingPage "6040" @default.
- W2014179916 startingPage "6033" @default.
- W2014179916 abstract "In this paper, a hybrid approach to combine conditional restricted Boltzmann machines (CRBM) and echo state networks (ESN) for binary time series prediction is proposed. Both methods have demonstrated their ability to extract complex dynamic patterns from time-dependent data in several applications and benchmark studies. To the authors' knowledge, it is the first time that the proposed combination of algorithms is applied for reliability prediction. The proposed approach is verified on a case study predicting the occurrence of railway operation disruptions based on discrete-event data, which is represented by a binary time series. The case study concerns speed restrictions affecting railway operations, caused by failures of tilting systems of railway vehicles. The overall prediction accuracy of the algorithm is 99.93%; the prediction accuracy for occurrence of speed restrictions within the foresight period is 98% (which corresponds to the sensitivity of the algorithm). The prediction results of the case study are compared to the prediction with a MLP trained with a Newton conjugate gradient algorithm. The proposed approach proves to be superior to MLP." @default.
- W2014179916 created "2016-06-24" @default.
- W2014179916 creator A5007304896 @default.
- W2014179916 creator A5019187489 @default.
- W2014179916 creator A5079637160 @default.
- W2014179916 date "2013-11-01" @default.
- W2014179916 modified "2023-10-18" @default.
- W2014179916 title "Predicting time series of railway speed restrictions with time-dependent machine learning techniques" @default.
- W2014179916 cites W1965300492 @default.
- W2014179916 cites W1970396034 @default.
- W2014179916 cites W1993761638 @default.
- W2014179916 cites W2001263627 @default.
- W2014179916 cites W2024805871 @default.
- W2014179916 cites W2042492924 @default.
- W2014179916 cites W2072097014 @default.
- W2014179916 cites W2078617233 @default.
- W2014179916 cites W2088023283 @default.
- W2014179916 cites W2092673937 @default.
- W2014179916 cites W2104893957 @default.
- W2014179916 cites W2118706537 @default.
- W2014179916 cites W2137983211 @default.
- W2014179916 cites W2148236249 @default.
- W2014179916 cites W2166107799 @default.
- W2014179916 cites W2169976759 @default.
- W2014179916 cites W4234698323 @default.
- W2014179916 doi "https://doi.org/10.1016/j.eswa.2013.04.038" @default.
- W2014179916 hasPublicationYear "2013" @default.
- W2014179916 type Work @default.
- W2014179916 sameAs 2014179916 @default.
- W2014179916 citedByCount "17" @default.
- W2014179916 countsByYear W20141799162014 @default.
- W2014179916 countsByYear W20141799162015 @default.
- W2014179916 countsByYear W20141799162016 @default.
- W2014179916 countsByYear W20141799162017 @default.
- W2014179916 countsByYear W20141799162018 @default.
- W2014179916 countsByYear W20141799162020 @default.
- W2014179916 countsByYear W20141799162021 @default.
- W2014179916 countsByYear W20141799162022 @default.
- W2014179916 countsByYear W20141799162023 @default.
- W2014179916 crossrefType "journal-article" @default.
- W2014179916 hasAuthorship W2014179916A5007304896 @default.
- W2014179916 hasAuthorship W2014179916A5019187489 @default.
- W2014179916 hasAuthorship W2014179916A5079637160 @default.
- W2014179916 hasBestOaLocation W20141799162 @default.
- W2014179916 hasConcept C119857082 @default.
- W2014179916 hasConcept C124101348 @default.
- W2014179916 hasConcept C143724316 @default.
- W2014179916 hasConcept C151406439 @default.
- W2014179916 hasConcept C151730666 @default.
- W2014179916 hasConcept C154945302 @default.
- W2014179916 hasConcept C41008148 @default.
- W2014179916 hasConcept C79403827 @default.
- W2014179916 hasConcept C86803240 @default.
- W2014179916 hasConceptScore W2014179916C119857082 @default.
- W2014179916 hasConceptScore W2014179916C124101348 @default.
- W2014179916 hasConceptScore W2014179916C143724316 @default.
- W2014179916 hasConceptScore W2014179916C151406439 @default.
- W2014179916 hasConceptScore W2014179916C151730666 @default.
- W2014179916 hasConceptScore W2014179916C154945302 @default.
- W2014179916 hasConceptScore W2014179916C41008148 @default.
- W2014179916 hasConceptScore W2014179916C79403827 @default.
- W2014179916 hasConceptScore W2014179916C86803240 @default.
- W2014179916 hasIssue "15" @default.
- W2014179916 hasLocation W20141799161 @default.
- W2014179916 hasLocation W20141799162 @default.
- W2014179916 hasLocation W20141799163 @default.
- W2014179916 hasLocation W20141799164 @default.
- W2014179916 hasOpenAccess W2014179916 @default.
- W2014179916 hasPrimaryLocation W20141799161 @default.
- W2014179916 hasRelatedWork W1550175370 @default.
- W2014179916 hasRelatedWork W1919101720 @default.
- W2014179916 hasRelatedWork W1976730198 @default.
- W2014179916 hasRelatedWork W1990205660 @default.
- W2014179916 hasRelatedWork W2119012848 @default.
- W2014179916 hasRelatedWork W4246257243 @default.
- W2014179916 hasRelatedWork W4386126592 @default.
- W2014179916 hasRelatedWork W4387331850 @default.
- W2014179916 hasRelatedWork W96888382 @default.
- W2014179916 hasRelatedWork W2622688551 @default.
- W2014179916 hasVolume "40" @default.
- W2014179916 isParatext "false" @default.
- W2014179916 isRetracted "false" @default.
- W2014179916 magId "2014179916" @default.
- W2014179916 workType "article" @default.