Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014194627> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2014194627 abstract "Vertical-cavity surface-emitting lasers (VCSELs) have been research extensively as key components for next-generation of wireless communication, computing, processing, switching and optical devices. Conventional VCSELs integrate two oppositely doped distributed Bragg reflectors (DBR) with a cavity layer between them. In the center of the cavity layer there is an active region with multiple quantum wells. Current is injected into the active region using oxide or proton-implanted apertures. Recent research and developments have been progressed to the tunable, long-wavelength, and multiple-wavelength MEMS-based electrically- and optically-pumped VCSELs. These MEMS VCSELs integrate a bottom n-DBR (for example, GaAs-AlGaAs), a cavity layer with the active region (for example, InGaAS), and a top mirror. The top mirror integrates p-DBR (oxidation and sacrificial layers, AlAs, AlGaAs) -- air gap -- top n-DBR suspended above the laser cavity and controlled (displaced or bent) by the nano- or microscale actuators. The current is fed through the p-DBR. Hence, optoelectronics and microelectromechics are examined for MEMS VCSELs. In contrast, the optically-pumped VCSLEs with membrane MEMS integrate n-DBR, cavity layer with the active region, p-DBR, sacrificial layer (for example, AlGaAs) and top mirror (quarter-wave GaAs layer). Usually, the wavelength of tunable VCSELs can be varied within 10 - 30 nm increments. To optimize MEMS VCSELs, far-reaching research and developments must be carried out. Recently, novel MEMS VCSELs topologies and configurations have been devised. These MEMS VCSELs must be modeled, analyzed, and optimized. The computer-aided-design will lead to essential improvement of lasers optimizing their performance. High-fidelity modeling, heterogeneous simulation, data-intensive analysis and synergetic design of MEMS VCSELs are part of a newly emerging field of computational optoelectromechanics. In fact, high-fidelity modeling is an important part in synthesis and design of affordable high-performance MEMS VCSELs with the desired performance and reliability. The basic equations to model VCSELs are found using the quantum mechanics, quantum electromagnetic field theory, Maxwell's and Navier-Stokes equations. To derive the equations of motion for nano- or microactuators, the functional density concept is used to find the force, and Newtonian mechanics allows one to derive the differential equations to integrate mechanical dynamics. This paper focuses on the development of the theory of computational optoelectromechanics and its application to computer-aided design of MEMS VCSELs. The modeling, simulation, analysis and design results are reported and illustrated." @default.
- W2014194627 created "2016-06-24" @default.
- W2014194627 creator A5055554865 @default.
- W2014194627 date "2003-04-15" @default.
- W2014194627 modified "2023-10-16" @default.
- W2014194627 title "Computational optoelectromechanics and its application to MEMS VCSELs" @default.
- W2014194627 doi "https://doi.org/10.1117/12.502160" @default.
- W2014194627 hasPublicationYear "2003" @default.
- W2014194627 type Work @default.
- W2014194627 sameAs 2014194627 @default.
- W2014194627 citedByCount "0" @default.
- W2014194627 crossrefType "proceedings-article" @default.
- W2014194627 hasAuthorship W2014194627A5055554865 @default.
- W2014194627 hasConcept C106246969 @default.
- W2014194627 hasConcept C120665830 @default.
- W2014194627 hasConcept C121332964 @default.
- W2014194627 hasConcept C171250308 @default.
- W2014194627 hasConcept C192562407 @default.
- W2014194627 hasConcept C2776026197 @default.
- W2014194627 hasConcept C2779227376 @default.
- W2014194627 hasConcept C2780662705 @default.
- W2014194627 hasConcept C34082928 @default.
- W2014194627 hasConcept C37977207 @default.
- W2014194627 hasConcept C40637687 @default.
- W2014194627 hasConcept C49040817 @default.
- W2014194627 hasConcept C510052550 @default.
- W2014194627 hasConcept C520434653 @default.
- W2014194627 hasConcept C6260449 @default.
- W2014194627 hasConcept C87359718 @default.
- W2014194627 hasConceptScore W2014194627C106246969 @default.
- W2014194627 hasConceptScore W2014194627C120665830 @default.
- W2014194627 hasConceptScore W2014194627C121332964 @default.
- W2014194627 hasConceptScore W2014194627C171250308 @default.
- W2014194627 hasConceptScore W2014194627C192562407 @default.
- W2014194627 hasConceptScore W2014194627C2776026197 @default.
- W2014194627 hasConceptScore W2014194627C2779227376 @default.
- W2014194627 hasConceptScore W2014194627C2780662705 @default.
- W2014194627 hasConceptScore W2014194627C34082928 @default.
- W2014194627 hasConceptScore W2014194627C37977207 @default.
- W2014194627 hasConceptScore W2014194627C40637687 @default.
- W2014194627 hasConceptScore W2014194627C49040817 @default.
- W2014194627 hasConceptScore W2014194627C510052550 @default.
- W2014194627 hasConceptScore W2014194627C520434653 @default.
- W2014194627 hasConceptScore W2014194627C6260449 @default.
- W2014194627 hasConceptScore W2014194627C87359718 @default.
- W2014194627 hasLocation W20141946271 @default.
- W2014194627 hasOpenAccess W2014194627 @default.
- W2014194627 hasPrimaryLocation W20141946271 @default.
- W2014194627 hasRelatedWork W1976337259 @default.
- W2014194627 hasRelatedWork W1988060310 @default.
- W2014194627 hasRelatedWork W2017817127 @default.
- W2014194627 hasRelatedWork W2049581503 @default.
- W2014194627 hasRelatedWork W2111124909 @default.
- W2014194627 hasRelatedWork W2270280759 @default.
- W2014194627 hasRelatedWork W2324750587 @default.
- W2014194627 hasRelatedWork W2537018494 @default.
- W2014194627 hasRelatedWork W2545265042 @default.
- W2014194627 hasRelatedWork W3128772001 @default.
- W2014194627 isParatext "false" @default.
- W2014194627 isRetracted "false" @default.
- W2014194627 magId "2014194627" @default.
- W2014194627 workType "article" @default.