Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014207836> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2014207836 endingPage "1752" @default.
- W2014207836 startingPage "1737" @default.
- W2014207836 abstract "Abstract The problem of obtaining the maximum probability 2 × c contingency table with fixed marginal sums, R = (R 1, R 2) and C = (C 1, … , C c ), and row and column independence is equivalent to the problem of obtaining the maximum probability points (mode) of the multivariate hypergeometric distribution MH(R 1; C 1, … , C c ). The most simple and general method for these problems is Joe's (Joe, H. (1988 Joe, H. 1988. Extreme probabilities for contingency tables under row and column independence with application to Fisher's exact test. Commun. Statist. Theory Meth., 17(11): 3677–3685. [Taylor & Francis Online], [Web of Science ®] , [Google Scholar]). Extreme probabilities for contingency tables under row and column independence with application to Fisher's exact test. Commun. Statist. Theory Meth. 17(11):3677–3685.) In this article we study a family of MH's in which a connection relationship is defined between its elements. Based on this family and on a characterization of the mode described in Requena and Martín (Requena, F., Martín, N. (2000 Requena, F. and Martín, N. 2000. Characterization of maximum probability points in the multivariate hypergeometric distribution. Statist. Probab. Lett., 50: 39–47. [Google Scholar]). Characterization of maximum probability points in the multivariate hypergeometric distribution. Statist. Probab. Lett. 50:39–47.), we develop a new method for the above problems, which is completely general, non recursive, very simple in practice and more efficient than the Joe's method. Also, under weak conditions (which almost always hold), the proposed method provides a simple explicit solution to these problems. In addition, the well-known expression for the mode of a hypergeometric distribution is just a particular case of the method in this article." @default.
- W2014207836 created "2016-06-24" @default.
- W2014207836 creator A5046545149 @default.
- W2014207836 creator A5075388784 @default.
- W2014207836 date "2003-01-08" @default.
- W2014207836 modified "2023-09-27" @default.
- W2014207836 title "The Maximum Probability 2 × <i>c</i>Contingency Tables and the Maximum Probability Points of the Multivariate Hypergeometric Distribution" @default.
- W2014207836 cites W1517554223 @default.
- W2014207836 cites W1987419076 @default.
- W2014207836 cites W2063546850 @default.
- W2014207836 cites W2071996688 @default.
- W2014207836 cites W2300271947 @default.
- W2014207836 doi "https://doi.org/10.1081/sta-120022706" @default.
- W2014207836 hasPublicationYear "2003" @default.
- W2014207836 type Work @default.
- W2014207836 sameAs 2014207836 @default.
- W2014207836 citedByCount "5" @default.
- W2014207836 countsByYear W20142078362013 @default.
- W2014207836 countsByYear W20142078362017 @default.
- W2014207836 countsByYear W20142078362019 @default.
- W2014207836 crossrefType "journal-article" @default.
- W2014207836 hasAuthorship W2014207836A5046545149 @default.
- W2014207836 hasAuthorship W2014207836A5075388784 @default.
- W2014207836 hasConcept C105795698 @default.
- W2014207836 hasConcept C114614502 @default.
- W2014207836 hasConcept C118615104 @default.
- W2014207836 hasConcept C161584116 @default.
- W2014207836 hasConcept C171250308 @default.
- W2014207836 hasConcept C176671685 @default.
- W2014207836 hasConcept C177384507 @default.
- W2014207836 hasConcept C192562407 @default.
- W2014207836 hasConcept C197320386 @default.
- W2014207836 hasConcept C202444582 @default.
- W2014207836 hasConcept C2780841128 @default.
- W2014207836 hasConcept C33923547 @default.
- W2014207836 hasConcept C35651441 @default.
- W2014207836 hasConcept C91998498 @default.
- W2014207836 hasConceptScore W2014207836C105795698 @default.
- W2014207836 hasConceptScore W2014207836C114614502 @default.
- W2014207836 hasConceptScore W2014207836C118615104 @default.
- W2014207836 hasConceptScore W2014207836C161584116 @default.
- W2014207836 hasConceptScore W2014207836C171250308 @default.
- W2014207836 hasConceptScore W2014207836C176671685 @default.
- W2014207836 hasConceptScore W2014207836C177384507 @default.
- W2014207836 hasConceptScore W2014207836C192562407 @default.
- W2014207836 hasConceptScore W2014207836C197320386 @default.
- W2014207836 hasConceptScore W2014207836C202444582 @default.
- W2014207836 hasConceptScore W2014207836C2780841128 @default.
- W2014207836 hasConceptScore W2014207836C33923547 @default.
- W2014207836 hasConceptScore W2014207836C35651441 @default.
- W2014207836 hasConceptScore W2014207836C91998498 @default.
- W2014207836 hasIssue "9" @default.
- W2014207836 hasLocation W20142078361 @default.
- W2014207836 hasOpenAccess W2014207836 @default.
- W2014207836 hasPrimaryLocation W20142078361 @default.
- W2014207836 hasRelatedWork W1881085067 @default.
- W2014207836 hasRelatedWork W1980905932 @default.
- W2014207836 hasRelatedWork W1998344244 @default.
- W2014207836 hasRelatedWork W2040248213 @default.
- W2014207836 hasRelatedWork W2041759497 @default.
- W2014207836 hasRelatedWork W2062054431 @default.
- W2014207836 hasRelatedWork W2595537035 @default.
- W2014207836 hasRelatedWork W3183281194 @default.
- W2014207836 hasRelatedWork W4245937150 @default.
- W2014207836 hasRelatedWork W864574261 @default.
- W2014207836 hasVolume "32" @default.
- W2014207836 isParatext "false" @default.
- W2014207836 isRetracted "false" @default.
- W2014207836 magId "2014207836" @default.
- W2014207836 workType "article" @default.