Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014233487> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2014233487 endingPage "296" @default.
- W2014233487 startingPage "261" @default.
- W2014233487 abstract "For an integer n⩾3, a rank-n matroid is called an n-spike if it consists of n three-point lines through a common point such that, for all k in {1,2,…,n−1}, the union of every set of k of these lines has rank k+1. It is well known that there is a unique binary n-spike for each integer n⩾3. In this paper, we first prove that, for each integer n⩾3, there are exactly two distinct ternary n-spikes, and there are exactly ⌊(n2+6n+24)/12⌋ quaternary n-spikes. Then we prove that, for each integer n⩾4, there are exactly n+2+⌊n/2⌋ quinternary n-spikes and, for each integer n⩾18, the number of n-spikes representable over GF(7) is ⌊(2n2+6n+6)/3⌋. Finally, for each q>7, we find the asymptotic value of the number of distinct rank-n spikes that are representable over GF(q)." @default.
- W2014233487 created "2016-06-24" @default.
- W2014233487 creator A5054067688 @default.
- W2014233487 date "2003-04-01" @default.
- W2014233487 modified "2023-09-27" @default.
- W2014233487 title "On the number of spikes over finite fields" @default.
- W2014233487 doi "https://doi.org/10.1016/s0012-365x(02)00629-5" @default.
- W2014233487 hasPublicationYear "2003" @default.
- W2014233487 type Work @default.
- W2014233487 sameAs 2014233487 @default.
- W2014233487 citedByCount "4" @default.
- W2014233487 countsByYear W20142334872014 @default.
- W2014233487 countsByYear W20142334872018 @default.
- W2014233487 crossrefType "journal-article" @default.
- W2014233487 hasAuthorship W2014233487A5054067688 @default.
- W2014233487 hasConcept C106286213 @default.
- W2014233487 hasConcept C114614502 @default.
- W2014233487 hasConcept C118615104 @default.
- W2014233487 hasConcept C164226766 @default.
- W2014233487 hasConcept C199360897 @default.
- W2014233487 hasConcept C33676613 @default.
- W2014233487 hasConcept C33923547 @default.
- W2014233487 hasConcept C41008148 @default.
- W2014233487 hasConcept C48372109 @default.
- W2014233487 hasConcept C94375191 @default.
- W2014233487 hasConcept C97137487 @default.
- W2014233487 hasConceptScore W2014233487C106286213 @default.
- W2014233487 hasConceptScore W2014233487C114614502 @default.
- W2014233487 hasConceptScore W2014233487C118615104 @default.
- W2014233487 hasConceptScore W2014233487C164226766 @default.
- W2014233487 hasConceptScore W2014233487C199360897 @default.
- W2014233487 hasConceptScore W2014233487C33676613 @default.
- W2014233487 hasConceptScore W2014233487C33923547 @default.
- W2014233487 hasConceptScore W2014233487C41008148 @default.
- W2014233487 hasConceptScore W2014233487C48372109 @default.
- W2014233487 hasConceptScore W2014233487C94375191 @default.
- W2014233487 hasConceptScore W2014233487C97137487 @default.
- W2014233487 hasIssue "1-3" @default.
- W2014233487 hasLocation W20142334871 @default.
- W2014233487 hasOpenAccess W2014233487 @default.
- W2014233487 hasPrimaryLocation W20142334871 @default.
- W2014233487 hasRelatedWork W2014233487 @default.
- W2014233487 hasRelatedWork W2026319235 @default.
- W2014233487 hasRelatedWork W2037663001 @default.
- W2014233487 hasRelatedWork W2050921239 @default.
- W2014233487 hasRelatedWork W2114213452 @default.
- W2014233487 hasRelatedWork W2135952967 @default.
- W2014233487 hasRelatedWork W2950903505 @default.
- W2014233487 hasRelatedWork W3124218226 @default.
- W2014233487 hasRelatedWork W4287366254 @default.
- W2014233487 hasRelatedWork W4301621711 @default.
- W2014233487 hasVolume "265" @default.
- W2014233487 isParatext "false" @default.
- W2014233487 isRetracted "false" @default.
- W2014233487 magId "2014233487" @default.
- W2014233487 workType "article" @default.