Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014274316> ?p ?o ?g. }
- W2014274316 endingPage "868" @default.
- W2014274316 startingPage "851" @default.
- W2014274316 abstract "In this paper, a hybrid scheme for time series prediction is developed based on wavelet decomposition combined with Bayesian Least Squares Support Vector Machine regression. As a filtering step, using the Maximal Overlap Discrete Wavelet Transform, the original time series is mapped on a scale-by-scale basis yielding an outcome set of new time series with simpler temporal dynamic structures. Next, a scale-by-scale Bayesian Least Squares Support Vector Machine predictor is provided. Individual scale predictions are subsequently recombined to yield an overall forecast. The relevance of the suggested procedure is shown on the NINO3 SST anomaly index via a comparison with the existing methods for modeling and prediction." @default.
- W2014274316 created "2016-06-24" @default.
- W2014274316 creator A5020210821 @default.
- W2014274316 creator A5040771882 @default.
- W2014274316 creator A5046505962 @default.
- W2014274316 date "2008-11-01" @default.
- W2014274316 modified "2023-09-30" @default.
- W2014274316 title "A WAVELET SUPPORT VECTOR MACHINE COUPLED METHOD FOR TIME SERIES PREDICTION" @default.
- W2014274316 cites W1496317909 @default.
- W2014274316 cites W1567512734 @default.
- W2014274316 cites W1596717185 @default.
- W2014274316 cites W1998355995 @default.
- W2014274316 cites W2029279587 @default.
- W2014274316 cites W2035891155 @default.
- W2014274316 cites W2040399713 @default.
- W2014274316 cites W2052429958 @default.
- W2014274316 cites W2066849897 @default.
- W2014274316 cites W2067984959 @default.
- W2014274316 cites W2068522471 @default.
- W2014274316 cites W2080367570 @default.
- W2014274316 cites W2111440106 @default.
- W2014274316 cites W2126709108 @default.
- W2014274316 cites W2132984323 @default.
- W2014274316 cites W2156909104 @default.
- W2014274316 cites W2159221747 @default.
- W2014274316 cites W2176202464 @default.
- W2014274316 cites W4255272544 @default.
- W2014274316 cites W4292963524 @default.
- W2014274316 cites W4298352105 @default.
- W2014274316 cites W594114979 @default.
- W2014274316 doi "https://doi.org/10.1142/s0219691308002719" @default.
- W2014274316 hasPublicationYear "2008" @default.
- W2014274316 type Work @default.
- W2014274316 sameAs 2014274316 @default.
- W2014274316 citedByCount "15" @default.
- W2014274316 countsByYear W20142743162013 @default.
- W2014274316 countsByYear W20142743162014 @default.
- W2014274316 countsByYear W20142743162016 @default.
- W2014274316 countsByYear W20142743162019 @default.
- W2014274316 countsByYear W20142743162021 @default.
- W2014274316 countsByYear W20142743162023 @default.
- W2014274316 crossrefType "journal-article" @default.
- W2014274316 hasAuthorship W2014274316A5020210821 @default.
- W2014274316 hasAuthorship W2014274316A5040771882 @default.
- W2014274316 hasAuthorship W2014274316A5046505962 @default.
- W2014274316 hasConcept C105795698 @default.
- W2014274316 hasConcept C107673813 @default.
- W2014274316 hasConcept C11413529 @default.
- W2014274316 hasConcept C119857082 @default.
- W2014274316 hasConcept C121332964 @default.
- W2014274316 hasConcept C12267149 @default.
- W2014274316 hasConcept C124101348 @default.
- W2014274316 hasConcept C143724316 @default.
- W2014274316 hasConcept C145828037 @default.
- W2014274316 hasConcept C14948415 @default.
- W2014274316 hasConcept C151406439 @default.
- W2014274316 hasConcept C151730666 @default.
- W2014274316 hasConcept C153180895 @default.
- W2014274316 hasConcept C154945302 @default.
- W2014274316 hasConcept C177264268 @default.
- W2014274316 hasConcept C185429906 @default.
- W2014274316 hasConcept C196216189 @default.
- W2014274316 hasConcept C199360897 @default.
- W2014274316 hasConcept C2778755073 @default.
- W2014274316 hasConcept C33923547 @default.
- W2014274316 hasConcept C41008148 @default.
- W2014274316 hasConcept C46286280 @default.
- W2014274316 hasConcept C47432892 @default.
- W2014274316 hasConcept C62520636 @default.
- W2014274316 hasConcept C739882 @default.
- W2014274316 hasConcept C86803240 @default.
- W2014274316 hasConcept C9936470 @default.
- W2014274316 hasConceptScore W2014274316C105795698 @default.
- W2014274316 hasConceptScore W2014274316C107673813 @default.
- W2014274316 hasConceptScore W2014274316C11413529 @default.
- W2014274316 hasConceptScore W2014274316C119857082 @default.
- W2014274316 hasConceptScore W2014274316C121332964 @default.
- W2014274316 hasConceptScore W2014274316C12267149 @default.
- W2014274316 hasConceptScore W2014274316C124101348 @default.
- W2014274316 hasConceptScore W2014274316C143724316 @default.
- W2014274316 hasConceptScore W2014274316C145828037 @default.
- W2014274316 hasConceptScore W2014274316C14948415 @default.
- W2014274316 hasConceptScore W2014274316C151406439 @default.
- W2014274316 hasConceptScore W2014274316C151730666 @default.
- W2014274316 hasConceptScore W2014274316C153180895 @default.
- W2014274316 hasConceptScore W2014274316C154945302 @default.
- W2014274316 hasConceptScore W2014274316C177264268 @default.
- W2014274316 hasConceptScore W2014274316C185429906 @default.
- W2014274316 hasConceptScore W2014274316C196216189 @default.
- W2014274316 hasConceptScore W2014274316C199360897 @default.
- W2014274316 hasConceptScore W2014274316C2778755073 @default.
- W2014274316 hasConceptScore W2014274316C33923547 @default.
- W2014274316 hasConceptScore W2014274316C41008148 @default.
- W2014274316 hasConceptScore W2014274316C46286280 @default.
- W2014274316 hasConceptScore W2014274316C47432892 @default.
- W2014274316 hasConceptScore W2014274316C62520636 @default.
- W2014274316 hasConceptScore W2014274316C739882 @default.
- W2014274316 hasConceptScore W2014274316C86803240 @default.