Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014287534> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2014287534 endingPage "149" @default.
- W2014287534 startingPage "140" @default.
- W2014287534 abstract "Summary Gas/condensate reservoirs have been the subject of intensive research throughout the years because they represent an important class of the world's hydrocarbon reserves. Their exploitation for maximum hydrocarbon recovery involves additional complexities that cast them as a different class of reservoirs, apart from dry-gas, wet-gas, and oil reservoirs. Gas/condensate reservoirs are good candidates for compositional-simulation studies because their depletion performance is highly influenced by changes in fluid composition. Often, highly sophisticated and computationally intensive compositional simulations are needed for the accurate modeling of their performance, phase behavior, and fluid-flow characteristics. The desired outcome of a simulation study for gas/condensate reservoirs is the identification and development of the best operational production schemes that maximize hydrocarbon recovery with a minimum loss of condensate at reservoir conditions. However, compositional simulations are demanding in terms of computational overhead, manpower, and software and hardware requirements. Artificial-neural-network (ANN) technology (soft-computing) has proved instrumental in establishing expert systems capable of learning the existing vaguely understood relationships between the input parameters and output responses of highly sophisticated hard-computing protocols such as compositional simulation of gas/condensate reservoirs. In this study, we conduct parametric studies that identify the most influential reservoir and fluid characteristics in the establishment of optimum production protocols for the exploitation of gas/condensate reservoirs. During the training phase of the ANN, an internal mapping is created that accurately estimates the corresponding output for a range of input parameters. In this paper, a powerful screening and optimization tool for the production of gas/condensate reservoirs is presented. This tool is capable of screening the eligibility of different gas/condensate reservoirs for exploitation as well as assisting in designing the optimized exploitation scheme for a particular reservoir under consideration for development." @default.
- W2014287534 created "2016-06-24" @default.
- W2014287534 creator A5025125531 @default.
- W2014287534 creator A5035065122 @default.
- W2014287534 creator A5070523811 @default.
- W2014287534 date "2007-04-19" @default.
- W2014287534 modified "2023-09-25" @default.
- W2014287534 title "Study of Gas/Condensate Reservoir Exploitation Using Neurosimulation" @default.
- W2014287534 cites W1993610737 @default.
- W2014287534 cites W2014136924 @default.
- W2014287534 cites W2053822173 @default.
- W2014287534 cites W2057596542 @default.
- W2014287534 cites W2075479314 @default.
- W2014287534 cites W4255021767 @default.
- W2014287534 doi "https://doi.org/10.2118/88471-pa" @default.
- W2014287534 hasPublicationYear "2007" @default.
- W2014287534 type Work @default.
- W2014287534 sameAs 2014287534 @default.
- W2014287534 citedByCount "8" @default.
- W2014287534 countsByYear W20142875342014 @default.
- W2014287534 countsByYear W20142875342019 @default.
- W2014287534 countsByYear W20142875342021 @default.
- W2014287534 countsByYear W20142875342022 @default.
- W2014287534 crossrefType "journal-article" @default.
- W2014287534 hasAuthorship W2014287534A5025125531 @default.
- W2014287534 hasAuthorship W2014287534A5035065122 @default.
- W2014287534 hasAuthorship W2014287534A5070523811 @default.
- W2014287534 hasConcept C111919701 @default.
- W2014287534 hasConcept C127413603 @default.
- W2014287534 hasConcept C135796866 @default.
- W2014287534 hasConcept C14641988 @default.
- W2014287534 hasConcept C146978453 @default.
- W2014287534 hasConcept C147168706 @default.
- W2014287534 hasConcept C154945302 @default.
- W2014287534 hasConcept C204323151 @default.
- W2014287534 hasConcept C21880701 @default.
- W2014287534 hasConcept C2777447996 @default.
- W2014287534 hasConcept C2778668878 @default.
- W2014287534 hasConcept C2779096232 @default.
- W2014287534 hasConcept C2779960059 @default.
- W2014287534 hasConcept C39432304 @default.
- W2014287534 hasConcept C41008148 @default.
- W2014287534 hasConcept C50644808 @default.
- W2014287534 hasConcept C78762247 @default.
- W2014287534 hasConceptScore W2014287534C111919701 @default.
- W2014287534 hasConceptScore W2014287534C127413603 @default.
- W2014287534 hasConceptScore W2014287534C135796866 @default.
- W2014287534 hasConceptScore W2014287534C14641988 @default.
- W2014287534 hasConceptScore W2014287534C146978453 @default.
- W2014287534 hasConceptScore W2014287534C147168706 @default.
- W2014287534 hasConceptScore W2014287534C154945302 @default.
- W2014287534 hasConceptScore W2014287534C204323151 @default.
- W2014287534 hasConceptScore W2014287534C21880701 @default.
- W2014287534 hasConceptScore W2014287534C2777447996 @default.
- W2014287534 hasConceptScore W2014287534C2778668878 @default.
- W2014287534 hasConceptScore W2014287534C2779096232 @default.
- W2014287534 hasConceptScore W2014287534C2779960059 @default.
- W2014287534 hasConceptScore W2014287534C39432304 @default.
- W2014287534 hasConceptScore W2014287534C41008148 @default.
- W2014287534 hasConceptScore W2014287534C50644808 @default.
- W2014287534 hasConceptScore W2014287534C78762247 @default.
- W2014287534 hasIssue "02" @default.
- W2014287534 hasLocation W20142875341 @default.
- W2014287534 hasOpenAccess W2014287534 @default.
- W2014287534 hasPrimaryLocation W20142875341 @default.
- W2014287534 hasRelatedWork W1973649218 @default.
- W2014287534 hasRelatedWork W1992332321 @default.
- W2014287534 hasRelatedWork W2005759106 @default.
- W2014287534 hasRelatedWork W2079260591 @default.
- W2014287534 hasRelatedWork W2080767375 @default.
- W2014287534 hasRelatedWork W2355422313 @default.
- W2014287534 hasRelatedWork W2946751191 @default.
- W2014287534 hasRelatedWork W2989861294 @default.
- W2014287534 hasRelatedWork W4288350338 @default.
- W2014287534 hasRelatedWork W4361800988 @default.
- W2014287534 hasVolume "10" @default.
- W2014287534 isParatext "false" @default.
- W2014287534 isRetracted "false" @default.
- W2014287534 magId "2014287534" @default.
- W2014287534 workType "article" @default.