Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014337620> ?p ?o ?g. }
- W2014337620 endingPage "15578" @default.
- W2014337620 startingPage "15569" @default.
- W2014337620 abstract "We study energy spectra, eigenstates, and quantum diffusion for one- and two-dimensional quasiperiodic tight-binding models. As for our one-dimensional model system we choose the silver mean or ``octonacci'' chain. The two-dimensional labyrinth tiling, which is related to the octagonal tiling, is derived from a product of two octonacci chains. This makes it possible to treat rather large systems numerically. For the octonacci chain, one finds singular continuous energy spectra and critical eigenstates, which is the typical behavior for one-dimensional Schrodinger operators based on substitution sequences. The energy spectra for the labyrinth tiling can, depending on the strength of the quasiperiodic modulation, be either bandlike or fractal-like. However, the eigenstates are multifractal. The temporal spreading of a wave packet is described in terms of the autocorrelation function $C(t)$ and the mean-square displacement $d(t).$ In all cases, we observe power laws $C(t)ensuremath{sim}{t}^{ensuremath{-}ensuremath{delta}}$ and $d(t)ensuremath{sim}{t}^{ensuremath{beta}}.$ For the octonacci chain, $0<ensuremath{delta}<1,$ whereas for the labyrinth tiling a crossover is observed from $ensuremath{delta}=1$ to $0<ensuremath{delta}<1$ with increasing modulation strength. Corresponding to the multifractal eigenstates, we obtain anomalous diffusion with $0<ensuremath{beta}<1$ for both systems. Moreover, we find that the behavior of $C(t)$ and $d(t)$ is independent of the shape and the location of the initial wave packet. We use our results to check several relations between the diffusion exponent $ensuremath{beta}$ and the fractal dimensions of energy spectra and eigenstates that were proposed in the literature." @default.
- W2014337620 created "2016-06-24" @default.
- W2014337620 creator A5010125493 @default.
- W2014337620 creator A5040334898 @default.
- W2014337620 creator A5063438029 @default.
- W2014337620 creator A5086429243 @default.
- W2014337620 date "2000-12-15" @default.
- W2014337620 modified "2023-09-26" @default.
- W2014337620 title "Energy spectra, wave functions, and quantum diffusion for quasiperiodic systems" @default.
- W2014337620 cites W1964379942 @default.
- W2014337620 cites W1966245520 @default.
- W2014337620 cites W1968446912 @default.
- W2014337620 cites W1972553995 @default.
- W2014337620 cites W1973346169 @default.
- W2014337620 cites W1973865341 @default.
- W2014337620 cites W1977463718 @default.
- W2014337620 cites W1978201202 @default.
- W2014337620 cites W1983826488 @default.
- W2014337620 cites W1984071722 @default.
- W2014337620 cites W1985529277 @default.
- W2014337620 cites W1986012908 @default.
- W2014337620 cites W1988619801 @default.
- W2014337620 cites W1990494230 @default.
- W2014337620 cites W1992082493 @default.
- W2014337620 cites W1995393333 @default.
- W2014337620 cites W1998050904 @default.
- W2014337620 cites W2000143134 @default.
- W2014337620 cites W2003027367 @default.
- W2014337620 cites W2004359964 @default.
- W2014337620 cites W2004722318 @default.
- W2014337620 cites W2013259257 @default.
- W2014337620 cites W2015362541 @default.
- W2014337620 cites W2017508152 @default.
- W2014337620 cites W2018294664 @default.
- W2014337620 cites W2018483105 @default.
- W2014337620 cites W2021497492 @default.
- W2014337620 cites W2030699598 @default.
- W2014337620 cites W2031810023 @default.
- W2014337620 cites W2039466232 @default.
- W2014337620 cites W2039578173 @default.
- W2014337620 cites W2042842370 @default.
- W2014337620 cites W2044581028 @default.
- W2014337620 cites W2054945589 @default.
- W2014337620 cites W2065377549 @default.
- W2014337620 cites W2072627759 @default.
- W2014337620 cites W2072840111 @default.
- W2014337620 cites W2085806248 @default.
- W2014337620 cites W2092236644 @default.
- W2014337620 cites W2094669153 @default.
- W2014337620 cites W2095360582 @default.
- W2014337620 cites W2101071015 @default.
- W2014337620 cites W2148924966 @default.
- W2014337620 cites W2169163538 @default.
- W2014337620 cites W2912420824 @default.
- W2014337620 cites W3099338027 @default.
- W2014337620 cites W3101552526 @default.
- W2014337620 doi "https://doi.org/10.1103/physrevb.62.15569" @default.
- W2014337620 hasPublicationYear "2000" @default.
- W2014337620 type Work @default.
- W2014337620 sameAs 2014337620 @default.
- W2014337620 citedByCount "54" @default.
- W2014337620 countsByYear W20143376202012 @default.
- W2014337620 countsByYear W20143376202013 @default.
- W2014337620 countsByYear W20143376202014 @default.
- W2014337620 countsByYear W20143376202015 @default.
- W2014337620 countsByYear W20143376202016 @default.
- W2014337620 countsByYear W20143376202017 @default.
- W2014337620 countsByYear W20143376202018 @default.
- W2014337620 countsByYear W20143376202019 @default.
- W2014337620 countsByYear W20143376202020 @default.
- W2014337620 countsByYear W20143376202021 @default.
- W2014337620 countsByYear W20143376202022 @default.
- W2014337620 countsByYear W20143376202023 @default.
- W2014337620 crossrefType "journal-article" @default.
- W2014337620 hasAuthorship W2014337620A5010125493 @default.
- W2014337620 hasAuthorship W2014337620A5040334898 @default.
- W2014337620 hasAuthorship W2014337620A5063438029 @default.
- W2014337620 hasAuthorship W2014337620A5086429243 @default.
- W2014337620 hasBestOaLocation W20143376202 @default.
- W2014337620 hasConcept C106978608 @default.
- W2014337620 hasConcept C121332964 @default.
- W2014337620 hasConcept C158693339 @default.
- W2014337620 hasConcept C186370098 @default.
- W2014337620 hasConcept C26873012 @default.
- W2014337620 hasConcept C37914503 @default.
- W2014337620 hasConcept C4839761 @default.
- W2014337620 hasConcept C55637507 @default.
- W2014337620 hasConcept C62520636 @default.
- W2014337620 hasConcept C84114770 @default.
- W2014337620 hasConceptScore W2014337620C106978608 @default.
- W2014337620 hasConceptScore W2014337620C121332964 @default.
- W2014337620 hasConceptScore W2014337620C158693339 @default.
- W2014337620 hasConceptScore W2014337620C186370098 @default.
- W2014337620 hasConceptScore W2014337620C26873012 @default.
- W2014337620 hasConceptScore W2014337620C37914503 @default.
- W2014337620 hasConceptScore W2014337620C4839761 @default.
- W2014337620 hasConceptScore W2014337620C55637507 @default.
- W2014337620 hasConceptScore W2014337620C62520636 @default.