Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014358933> ?p ?o ?g. }
- W2014358933 abstract "Due to aging phenomena, the microstructure, mechanical response, and failure behavior of lead free solder joints in electronic assemblies are constantly evolving when exposed to isothermal and/or thermal cycling environments. In our ongoing studies, we are exploring aging phenomena by nano-mechanical testing of SAC lead free solder joints extracted from PBGA assemblies. Using nanoindentation techniques, the stress-strain and creep behavior of the SAC solder materials are being explored at the joint scale for various aging conditions. Mechanical properties characterized as a function of aging include the elastic modulus, hardness, and yield stress. Using a constant force at max indentation, the creep response of the aged and non-aged solder joint materials is also being measured as a function of the applied stress level. With these approaches, aging effects in actual solder joints are being quantified and correlated to the magnitudes of those observed in testing of miniature bulk specimens. In our initial work (ECTC 2013), we explored aging effects in single grain SAC305 solder joints. In the current investigation, we have extended our previous work on nanoindentation of joints to examine a full test matrix of SAC solder alloys. The effects of silver content on SAC solder aging has been evaluated by testing joints from SACN05 (SAC105, SAC205, SAC305, and SAC405) test boards assembled with the same reflow profile. In all cases, the tested joints were extracted from 14 × 14 mm PBGA assemblies (0.8 mm ball pitch, 0.46 mm ball diameter) that are part of the iNEMI Characterization of Pb-Free Alloy Alternatives Project (16 different solder joint alloys available). After extraction, the joints were subjected to various aging conditions (0 to 12 months of aging at T = 125 C), and then tested via nanoindentation techniques to evaluate the stress-strain and creep behavior of the four aged SAC solder alloy materials at the joint scale. The observed aging effects in the SACN05 solder joints have been quantified and correlated with the magnitudes observed in tensile testing of miniature bulk specimens performed in prior studies. The results show that the aging induced degradations of the mechanical properties (modulus, hardness) in the SAC joints were of similar order (30–40%) as those seen previously in the testing of larger “bulk” uniaxial solder specimens. The creep rates of the various tested SACN05 joints were found to increase by 8–50X due to aging. These degradations, while significant, were much less than those observed in larger bulk solder uniaxial tensile specimens with several hundred grains, where the increases ranged from 200X to 10000X for the various SACN05 alloys. Additional testing has been performed on very small tensile specimens with approximately 10 grains, and the aging-induced creep rate degradations found in these specimens were on the same order of magnitude as those observed in the single grain joints. Thus, the lack of the grain boundary sliding creep mechanism in the single grain joints is an important factor in avoiding the extremely large creep rate degradations (up to 10,000X) occurring in larger bulk SAC samples. All of the aging effects observed in the SACN05 joints were found to be exacerbated as the silver content in the alloy was reduced. In addition, the test results for all of the alloys show that the elastic, plastic, and creep properties of the solder joints and their sensitivities to aging are highly dependent on the crystal orientation. The observed mechanical behavior changes in joints are due to evolution in the microstructure and residual strains/stresses in the solder material, and measurements of these evolutions are critical to developing a fundamental understanding of solder joint aging phenomena. As another part of this work, we have performed an initial study of these effects in the same SAC305 solder joints that were tested using nanoindentation. The enhanced x-ray microdiffraction technique at the Advanced Light Source (Synchrotron) at the Lawrence Berkeley National Laboratory was employed to characterize several joints after various aging exposures (0, 1, and 7 days of aging at T = 125 C). For each joint, microdiffraction was used to examine grain growth, grain rotation, sub-grain formation, and residual strain and stress evolution as a function of the aging exposure. The entire joints were scanned using a 10 micron step size, and the results were correlated with changes in the mechanical response of the joint specimens measured by nanoindentation." @default.
- W2014358933 created "2016-06-24" @default.
- W2014358933 creator A5007976457 @default.
- W2014358933 creator A5036335857 @default.
- W2014358933 creator A5042350878 @default.
- W2014358933 creator A5059934284 @default.
- W2014358933 creator A5068741078 @default.
- W2014358933 date "2014-05-01" @default.
- W2014358933 modified "2023-09-23" @default.
- W2014358933 title "Exploration of aging induced evolution of solder joints using nanoindentation and microdiffraction" @default.
- W2014358933 cites W1800562981 @default.
- W2014358933 cites W1965807739 @default.
- W2014358933 cites W1966364823 @default.
- W2014358933 cites W1972797272 @default.
- W2014358933 cites W1988319387 @default.
- W2014358933 cites W1991915205 @default.
- W2014358933 cites W1996998837 @default.
- W2014358933 cites W1999628040 @default.
- W2014358933 cites W2002362498 @default.
- W2014358933 cites W2013992997 @default.
- W2014358933 cites W2015149717 @default.
- W2014358933 cites W2019880935 @default.
- W2014358933 cites W2033667989 @default.
- W2014358933 cites W2039069848 @default.
- W2014358933 cites W2040180369 @default.
- W2014358933 cites W2040992508 @default.
- W2014358933 cites W2048407303 @default.
- W2014358933 cites W2056994652 @default.
- W2014358933 cites W2059329575 @default.
- W2014358933 cites W2063426005 @default.
- W2014358933 cites W2073560512 @default.
- W2014358933 cites W2076191480 @default.
- W2014358933 cites W2078250003 @default.
- W2014358933 cites W2079474781 @default.
- W2014358933 cites W2080472818 @default.
- W2014358933 cites W2084570749 @default.
- W2014358933 cites W2085398947 @default.
- W2014358933 cites W2086933933 @default.
- W2014358933 cites W2088382796 @default.
- W2014358933 cites W2104566227 @default.
- W2014358933 cites W2105434833 @default.
- W2014358933 cites W2121483035 @default.
- W2014358933 cites W2127468250 @default.
- W2014358933 cites W2132235105 @default.
- W2014358933 cites W2134260445 @default.
- W2014358933 cites W2138161345 @default.
- W2014358933 cites W2139495772 @default.
- W2014358933 cites W2147684119 @default.
- W2014358933 cites W2158255245 @default.
- W2014358933 cites W2159698857 @default.
- W2014358933 cites W2161816853 @default.
- W2014358933 cites W2168561157 @default.
- W2014358933 cites W2210016856 @default.
- W2014358933 cites W2280619985 @default.
- W2014358933 cites W2636544354 @default.
- W2014358933 cites W4240764973 @default.
- W2014358933 cites W51145933 @default.
- W2014358933 doi "https://doi.org/10.1109/ectc.2014.6897315" @default.
- W2014358933 hasPublicationYear "2014" @default.
- W2014358933 type Work @default.
- W2014358933 sameAs 2014358933 @default.
- W2014358933 citedByCount "50" @default.
- W2014358933 countsByYear W20143589332015 @default.
- W2014358933 countsByYear W20143589332016 @default.
- W2014358933 countsByYear W20143589332017 @default.
- W2014358933 countsByYear W20143589332018 @default.
- W2014358933 countsByYear W20143589332019 @default.
- W2014358933 countsByYear W20143589332020 @default.
- W2014358933 countsByYear W20143589332021 @default.
- W2014358933 countsByYear W20143589332022 @default.
- W2014358933 crossrefType "proceedings-article" @default.
- W2014358933 hasAuthorship W2014358933A5007976457 @default.
- W2014358933 hasAuthorship W2014358933A5036335857 @default.
- W2014358933 hasAuthorship W2014358933A5042350878 @default.
- W2014358933 hasAuthorship W2014358933A5059934284 @default.
- W2014358933 hasAuthorship W2014358933A5068741078 @default.
- W2014358933 hasConcept C121332964 @default.
- W2014358933 hasConcept C127413603 @default.
- W2014358933 hasConcept C135628077 @default.
- W2014358933 hasConcept C149912024 @default.
- W2014358933 hasConcept C153294291 @default.
- W2014358933 hasConcept C159985019 @default.
- W2014358933 hasConcept C177564732 @default.
- W2014358933 hasConcept C18555067 @default.
- W2014358933 hasConcept C191897082 @default.
- W2014358933 hasConcept C192562407 @default.
- W2014358933 hasConcept C202973686 @default.
- W2014358933 hasConcept C204530211 @default.
- W2014358933 hasConcept C2780902562 @default.
- W2014358933 hasConcept C49326732 @default.
- W2014358933 hasConcept C50296614 @default.
- W2014358933 hasConcept C55359492 @default.
- W2014358933 hasConcept C66938386 @default.
- W2014358933 hasConcept C87976508 @default.
- W2014358933 hasConcept C94709252 @default.
- W2014358933 hasConceptScore W2014358933C121332964 @default.
- W2014358933 hasConceptScore W2014358933C127413603 @default.
- W2014358933 hasConceptScore W2014358933C135628077 @default.
- W2014358933 hasConceptScore W2014358933C149912024 @default.
- W2014358933 hasConceptScore W2014358933C153294291 @default.