Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014366901> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2014366901 endingPage "197" @default.
- W2014366901 startingPage "178" @default.
- W2014366901 abstract "Let R denote a positively graded noetherian ring over a field k, R = @EoRi with R, = k and m the irrelevant maximal ideal generated by forms of degree 1, or let R be the m-adic completion of such a ring. If we consider X as a homomorphic image of a polynomial ring, resp. of a power series ring over k with a homogeneous defining ideal, one may ask whether R has a (minimal) linear resolution as an S-module. Cohen-Macaulay rings R of maximal embedding dimension, e.g., have a linear resolution as Sally showed in [9]. She also proved formulas for the Hilbert series HR and the Poincari: series Pi, Pz. Schenzel [lo] later characterized CM-rings R with a linear resolution and called these rings “extremal.” He also gave formulas for HR and Pi. S. Goto (See (3.1) below) proved, besides other facts, the linearity of the resolution for Buchsbaum rings of maximal embedding dimension (i.e., edim R = dim R + e(R) + I(R) 1; I(R) denotes the invariant of the Buchsbaum ring R) and a formula for HH. In Section 1 we generalize these results and characterize rings with a linear resolution, which have a parameter system that forms a d-sequence. In the Buchsbaum case we then show that the H,, Pi and Pf of such rings are determined by the embedding dimension, the Krull dimension, the dimensions of the local cohomology modules as k-vector spaces and what we call the type of R. In Section 2 we determine all Buchsbaum rings R = k[ [R,]] of maximal embedding dimension and multiplicity 2. Sally proved in [8] that, for a local CM-ring (R, m) of maximal embedding dimension, the associated graded ring is also CM of maximal embedding dimension. Goto showed a similar result for Buchsbaum rings of" @default.
- W2014366901 created "2016-06-24" @default.
- W2014366901 creator A5004506145 @default.
- W2014366901 date "1982-03-01" @default.
- W2014366901 modified "2023-09-30" @default.
- W2014366901 title "On rings with linear resolutions" @default.
- W2014366901 cites W1508891586 @default.
- W2014366901 cites W1600090509 @default.
- W2014366901 cites W1991107612 @default.
- W2014366901 cites W2019244868 @default.
- W2014366901 cites W2030202009 @default.
- W2014366901 cites W2035325448 @default.
- W2014366901 cites W2050086050 @default.
- W2014366901 cites W2086323444 @default.
- W2014366901 cites W2096360987 @default.
- W2014366901 cites W2149529409 @default.
- W2014366901 cites W2321784962 @default.
- W2014366901 cites W2586435699 @default.
- W2014366901 doi "https://doi.org/10.1016/0021-8693(82)90069-2" @default.
- W2014366901 hasPublicationYear "1982" @default.
- W2014366901 type Work @default.
- W2014366901 sameAs 2014366901 @default.
- W2014366901 citedByCount "8" @default.
- W2014366901 countsByYear W20143669012020 @default.
- W2014366901 crossrefType "journal-article" @default.
- W2014366901 hasAuthorship W2014366901A5004506145 @default.
- W2014366901 hasBestOaLocation W20143669011 @default.
- W2014366901 hasConcept C202444582 @default.
- W2014366901 hasConcept C33923547 @default.
- W2014366901 hasConceptScore W2014366901C202444582 @default.
- W2014366901 hasConceptScore W2014366901C33923547 @default.
- W2014366901 hasIssue "1" @default.
- W2014366901 hasLocation W20143669011 @default.
- W2014366901 hasOpenAccess W2014366901 @default.
- W2014366901 hasPrimaryLocation W20143669011 @default.
- W2014366901 hasRelatedWork W1557945163 @default.
- W2014366901 hasRelatedWork W1985218657 @default.
- W2014366901 hasRelatedWork W1989920940 @default.
- W2014366901 hasRelatedWork W2036077645 @default.
- W2014366901 hasRelatedWork W2096753949 @default.
- W2014366901 hasRelatedWork W2963341196 @default.
- W2014366901 hasRelatedWork W2964292522 @default.
- W2014366901 hasRelatedWork W3103780039 @default.
- W2014366901 hasRelatedWork W3124205579 @default.
- W2014366901 hasRelatedWork W4249580765 @default.
- W2014366901 hasVolume "75" @default.
- W2014366901 isParatext "false" @default.
- W2014366901 isRetracted "false" @default.
- W2014366901 magId "2014366901" @default.
- W2014366901 workType "article" @default.