Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014372423> ?p ?o ?g. }
- W2014372423 endingPage "49" @default.
- W2014372423 startingPage "33" @default.
- W2014372423 abstract "Abstract Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling." @default.
- W2014372423 created "2016-06-24" @default.
- W2014372423 creator A5052051562 @default.
- W2014372423 creator A5070707003 @default.
- W2014372423 date "2013-06-01" @default.
- W2014372423 modified "2023-10-18" @default.
- W2014372423 title "A CNN based Hybrid approach towards automatic image registration" @default.
- W2014372423 cites W134708720 @default.
- W2014372423 cites W1509181723 @default.
- W2014372423 cites W1533971260 @default.
- W2014372423 cites W1829027101 @default.
- W2014372423 cites W1854712874 @default.
- W2014372423 cites W1874027545 @default.
- W2014372423 cites W194982321 @default.
- W2014372423 cites W1999231436 @default.
- W2014372423 cites W2025162356 @default.
- W2014372423 cites W2026772249 @default.
- W2014372423 cites W2040278377 @default.
- W2014372423 cites W2040775125 @default.
- W2014372423 cites W2050648510 @default.
- W2014372423 cites W2078357622 @default.
- W2014372423 cites W2088504145 @default.
- W2014372423 cites W2098937434 @default.
- W2014372423 cites W2099986721 @default.
- W2014372423 cites W2100591558 @default.
- W2014372423 cites W2102271206 @default.
- W2014372423 cites W2108580583 @default.
- W2014372423 cites W2117382194 @default.
- W2014372423 cites W2117897095 @default.
- W2014372423 cites W2124189704 @default.
- W2014372423 cites W2131684094 @default.
- W2014372423 cites W2132648706 @default.
- W2014372423 cites W2134239545 @default.
- W2014372423 cites W2136503713 @default.
- W2014372423 cites W2139958836 @default.
- W2014372423 cites W2140804075 @default.
- W2014372423 cites W2142473846 @default.
- W2014372423 cites W2147555557 @default.
- W2014372423 cites W2148603752 @default.
- W2014372423 cites W2151103935 @default.
- W2014372423 cites W2154975844 @default.
- W2014372423 cites W2155598194 @default.
- W2014372423 cites W2163105707 @default.
- W2014372423 cites W2164816590 @default.
- W2014372423 cites W2165061339 @default.
- W2014372423 cites W2166614310 @default.
- W2014372423 cites W2167090712 @default.
- W2014372423 cites W2168977926 @default.
- W2014372423 cites W2171491412 @default.
- W2014372423 cites W2323117768 @default.
- W2014372423 cites W3087563582 @default.
- W2014372423 cites W3167021248 @default.
- W2014372423 cites W73112891 @default.
- W2014372423 cites W2159132951 @default.
- W2014372423 cites W66521670 @default.
- W2014372423 doi "https://doi.org/10.2478/geocart-2013-0005" @default.
- W2014372423 hasPublicationYear "2013" @default.
- W2014372423 type Work @default.
- W2014372423 sameAs 2014372423 @default.
- W2014372423 citedByCount "7" @default.
- W2014372423 countsByYear W20143724232015 @default.
- W2014372423 countsByYear W20143724232018 @default.
- W2014372423 countsByYear W20143724232021 @default.
- W2014372423 countsByYear W20143724232022 @default.
- W2014372423 countsByYear W20143724232023 @default.
- W2014372423 crossrefType "journal-article" @default.
- W2014372423 hasAuthorship W2014372423A5052051562 @default.
- W2014372423 hasAuthorship W2014372423A5070707003 @default.
- W2014372423 hasBestOaLocation W20143724231 @default.
- W2014372423 hasConcept C105795698 @default.
- W2014372423 hasConcept C115961682 @default.
- W2014372423 hasConcept C119857082 @default.
- W2014372423 hasConcept C138885662 @default.
- W2014372423 hasConcept C150921843 @default.
- W2014372423 hasConcept C153180895 @default.
- W2014372423 hasConcept C154945302 @default.
- W2014372423 hasConcept C165064840 @default.
- W2014372423 hasConcept C166704113 @default.
- W2014372423 hasConcept C2776401178 @default.
- W2014372423 hasConcept C31972630 @default.
- W2014372423 hasConcept C33923547 @default.
- W2014372423 hasConcept C41008148 @default.
- W2014372423 hasConcept C41895202 @default.
- W2014372423 hasConcept C52622490 @default.
- W2014372423 hasConcept C61265191 @default.
- W2014372423 hasConceptScore W2014372423C105795698 @default.
- W2014372423 hasConceptScore W2014372423C115961682 @default.
- W2014372423 hasConceptScore W2014372423C119857082 @default.
- W2014372423 hasConceptScore W2014372423C138885662 @default.
- W2014372423 hasConceptScore W2014372423C150921843 @default.
- W2014372423 hasConceptScore W2014372423C153180895 @default.
- W2014372423 hasConceptScore W2014372423C154945302 @default.
- W2014372423 hasConceptScore W2014372423C165064840 @default.
- W2014372423 hasConceptScore W2014372423C166704113 @default.
- W2014372423 hasConceptScore W2014372423C2776401178 @default.
- W2014372423 hasConceptScore W2014372423C31972630 @default.
- W2014372423 hasConceptScore W2014372423C33923547 @default.
- W2014372423 hasConceptScore W2014372423C41008148 @default.