Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014374038> ?p ?o ?g. }
- W2014374038 endingPage "88" @default.
- W2014374038 startingPage "77" @default.
- W2014374038 abstract "Template-based protein structure prediction plays an important role in Functional Genomics by providing structural models of gene products, which can be utilized by structure-based approaches to function inference. From a systems level perspective, the high structural coverage of gene products in a given organism is critical. Despite continuous efforts towards the development of more sensitive threading approaches, confident structural models cannot be constructed for a considerable fraction of proteins due to difficulties in recognizing low-sequence identity templates with a similar fold to the target. Here we introduce a new modeling stratagem, which employs a library of synthetic sequences to improve template ranking in fold recognition by sequence profile-based methods. We developed a new method for the optimization of generic protein-like amino acid sequences to stabilize the respective structures using a combined empirical scoring function, which is compatible with these commonly used in protein threading and fold recognition. We show that the artificially evolved sequences, whose average sequence identity to the wild-type sequences is as low as 13.8%, have significant capabilities to recognize the correct structures. Importantly, the quality of the corresponding threading alignments is comparable to these constructed using conventional wild-type approaches (the average TM-score is 0.48 and 0.54, respectively). Fold recognition that uses data fusion to combine ranks calculated for both wild-type and synthetic template libraries systematically improves the detection of structural analogs. Depending on the threading algorithm used, it yields on average 4–16% higher recognition rates than using the wild-type template library alone. Synthetic sequences artificially evolved for the template structures provide an orthogonal source of signal that could be exploited to detect these templates unrecognized by standard modeling techniques. It opens up new directions in the development of more sensitive threading methods with the enhanced capabilities of targeting difficult, midnight zone templates. • A novel modeling stratagem to improve fold recognition is introduced. • We developed a new method for the optimization of amino acid sequences. • Artificial sequences have significant capabilities to recognize correct structures. • Fold recognition systematically improves the detection of structural analogs. • More sensitive threading methods to target midnight zone templates are suggested." @default.
- W2014374038 created "2016-06-24" @default.
- W2014374038 creator A5033579800 @default.
- W2014374038 date "2013-07-01" @default.
- W2014374038 modified "2023-09-26" @default.
- W2014374038 title "The utility of artificially evolved sequences in protein threading and fold recognition" @default.
- W2014374038 cites W1968733906 @default.
- W2014374038 cites W1977538576 @default.
- W2014374038 cites W1978486653 @default.
- W2014374038 cites W1981304244 @default.
- W2014374038 cites W2000541041 @default.
- W2014374038 cites W2013616490 @default.
- W2014374038 cites W2020009149 @default.
- W2014374038 cites W2026478054 @default.
- W2014374038 cites W2026918446 @default.
- W2014374038 cites W2033496784 @default.
- W2014374038 cites W2036149515 @default.
- W2014374038 cites W2056001773 @default.
- W2014374038 cites W2056905437 @default.
- W2014374038 cites W2062123114 @default.
- W2014374038 cites W2062693912 @default.
- W2014374038 cites W2067852761 @default.
- W2014374038 cites W2068018119 @default.
- W2014374038 cites W2081208252 @default.
- W2014374038 cites W2082972649 @default.
- W2014374038 cites W2086062742 @default.
- W2014374038 cites W2088487249 @default.
- W2014374038 cites W2089035513 @default.
- W2014374038 cites W2090649877 @default.
- W2014374038 cites W2099667027 @default.
- W2014374038 cites W2101220662 @default.
- W2014374038 cites W2103210604 @default.
- W2014374038 cites W2108067237 @default.
- W2014374038 cites W2108212798 @default.
- W2014374038 cites W2110779321 @default.
- W2014374038 cites W2112109058 @default.
- W2014374038 cites W2114194071 @default.
- W2014374038 cites W2114520383 @default.
- W2014374038 cites W2121125726 @default.
- W2014374038 cites W2123916964 @default.
- W2014374038 cites W2125508389 @default.
- W2014374038 cites W2126677834 @default.
- W2014374038 cites W2130479394 @default.
- W2014374038 cites W2133977913 @default.
- W2014374038 cites W2141920771 @default.
- W2014374038 cites W2144258433 @default.
- W2014374038 cites W2145087978 @default.
- W2014374038 cites W2145268834 @default.
- W2014374038 cites W2147850946 @default.
- W2014374038 cites W2151831732 @default.
- W2014374038 cites W2153187042 @default.
- W2014374038 cites W2153613893 @default.
- W2014374038 cites W2156328030 @default.
- W2014374038 cites W2158449659 @default.
- W2014374038 cites W2158714788 @default.
- W2014374038 cites W2160426410 @default.
- W2014374038 cites W2161151688 @default.
- W2014374038 cites W2163000619 @default.
- W2014374038 cites W2166912610 @default.
- W2014374038 cites W2169064131 @default.
- W2014374038 cites W3047916294 @default.
- W2014374038 cites W3199104097 @default.
- W2014374038 cites W4253863064 @default.
- W2014374038 doi "https://doi.org/10.1016/j.jtbi.2013.03.018" @default.
- W2014374038 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23542050" @default.
- W2014374038 hasPublicationYear "2013" @default.
- W2014374038 type Work @default.
- W2014374038 sameAs 2014374038 @default.
- W2014374038 citedByCount "8" @default.
- W2014374038 countsByYear W20143740382013 @default.
- W2014374038 countsByYear W20143740382014 @default.
- W2014374038 countsByYear W20143740382016 @default.
- W2014374038 countsByYear W20143740382019 @default.
- W2014374038 countsByYear W20143740382020 @default.
- W2014374038 countsByYear W20143740382021 @default.
- W2014374038 crossrefType "journal-article" @default.
- W2014374038 hasAuthorship W2014374038A5033579800 @default.
- W2014374038 hasConcept C10010492 @default.
- W2014374038 hasConcept C104317684 @default.
- W2014374038 hasConcept C11413529 @default.
- W2014374038 hasConcept C153180895 @default.
- W2014374038 hasConcept C154945302 @default.
- W2014374038 hasConcept C167625842 @default.
- W2014374038 hasConcept C18051474 @default.
- W2014374038 hasConcept C199360897 @default.
- W2014374038 hasConcept C200307862 @default.
- W2014374038 hasConcept C41008148 @default.
- W2014374038 hasConcept C47701112 @default.
- W2014374038 hasConcept C54355233 @default.
- W2014374038 hasConcept C55493867 @default.
- W2014374038 hasConcept C70721500 @default.
- W2014374038 hasConcept C82714645 @default.
- W2014374038 hasConcept C86803240 @default.
- W2014374038 hasConceptScore W2014374038C10010492 @default.
- W2014374038 hasConceptScore W2014374038C104317684 @default.
- W2014374038 hasConceptScore W2014374038C11413529 @default.
- W2014374038 hasConceptScore W2014374038C153180895 @default.
- W2014374038 hasConceptScore W2014374038C154945302 @default.