Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014376482> ?p ?o ?g. }
- W2014376482 endingPage "71" @default.
- W2014376482 startingPage "57" @default.
- W2014376482 abstract "Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the Colorado River well into the future. Other trace elements weathering from MS that are often of environmental concern include U and Mo, which mimic Se in their behavior; As, Co, Cr, Cu, Ni, and Pb, which show little redistribution; and Cd, Sb, V, and Zn, which accumulate in Stage I shale, but are lost to varying degrees from upper soil intervals. None of these trace elements have been reported previously as contaminants in the study area." @default.
- W2014376482 created "2016-06-24" @default.
- W2014376482 creator A5000044573 @default.
- W2014376482 creator A5009596606 @default.
- W2014376482 creator A5012818814 @default.
- W2014376482 creator A5018083581 @default.
- W2014376482 creator A5087164465 @default.
- W2014376482 date "2014-07-01" @default.
- W2014376482 modified "2023-10-10" @default.
- W2014376482 title "Contaminants from Cretaceous black shale: I. Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium" @default.
- W2014376482 cites W1481017744 @default.
- W2014376482 cites W1486667297 @default.
- W2014376482 cites W1494626568 @default.
- W2014376482 cites W154488288 @default.
- W2014376482 cites W1557115111 @default.
- W2014376482 cites W1577421685 @default.
- W2014376482 cites W1599509646 @default.
- W2014376482 cites W1974074908 @default.
- W2014376482 cites W1975773022 @default.
- W2014376482 cites W1976730890 @default.
- W2014376482 cites W1984173122 @default.
- W2014376482 cites W1985547002 @default.
- W2014376482 cites W1992797621 @default.
- W2014376482 cites W2006081057 @default.
- W2014376482 cites W2014370063 @default.
- W2014376482 cites W2022952430 @default.
- W2014376482 cites W2024818652 @default.
- W2014376482 cites W2026122970 @default.
- W2014376482 cites W2039286783 @default.
- W2014376482 cites W2040824971 @default.
- W2014376482 cites W2041173604 @default.
- W2014376482 cites W2045097351 @default.
- W2014376482 cites W2046686535 @default.
- W2014376482 cites W2047270620 @default.
- W2014376482 cites W2056779160 @default.
- W2014376482 cites W2057414181 @default.
- W2014376482 cites W2057451625 @default.
- W2014376482 cites W2059019377 @default.
- W2014376482 cites W2059675029 @default.
- W2014376482 cites W2066175290 @default.
- W2014376482 cites W2077734626 @default.
- W2014376482 cites W2086054519 @default.
- W2014376482 cites W2086850996 @default.
- W2014376482 cites W2095515093 @default.
- W2014376482 cites W2104195325 @default.
- W2014376482 cites W2135670373 @default.
- W2014376482 cites W2493439037 @default.
- W2014376482 cites W4293708627 @default.
- W2014376482 cites W4376848435 @default.
- W2014376482 cites W58686574 @default.
- W2014376482 cites W953716237 @default.
- W2014376482 doi "https://doi.org/10.1016/j.apgeochem.2013.12.010" @default.
- W2014376482 hasPublicationYear "2014" @default.
- W2014376482 type Work @default.
- W2014376482 sameAs 2014376482 @default.
- W2014376482 citedByCount "48" @default.
- W2014376482 countsByYear W20143764822014 @default.
- W2014376482 countsByYear W20143764822015 @default.
- W2014376482 countsByYear W20143764822016 @default.
- W2014376482 countsByYear W20143764822017 @default.
- W2014376482 countsByYear W20143764822018 @default.
- W2014376482 countsByYear W20143764822019 @default.
- W2014376482 countsByYear W20143764822020 @default.
- W2014376482 countsByYear W20143764822021 @default.
- W2014376482 countsByYear W20143764822022 @default.
- W2014376482 countsByYear W20143764822023 @default.
- W2014376482 crossrefType "journal-article" @default.
- W2014376482 hasAuthorship W2014376482A5000044573 @default.
- W2014376482 hasAuthorship W2014376482A5009596606 @default.
- W2014376482 hasAuthorship W2014376482A5012818814 @default.
- W2014376482 hasAuthorship W2014376482A5018083581 @default.
- W2014376482 hasAuthorship W2014376482A5087164465 @default.
- W2014376482 hasConcept C107872376 @default.
- W2014376482 hasConcept C127313418 @default.
- W2014376482 hasConcept C151730666 @default.
- W2014376482 hasConcept C153127940 @default.
- W2014376482 hasConcept C17409809 @default.
- W2014376482 hasConcept C185592680 @default.
- W2014376482 hasConcept C2776062231 @default.
- W2014376482 hasConcept C2779229104 @default.
- W2014376482 hasConcept C40724407 @default.
- W2014376482 hasConceptScore W2014376482C107872376 @default.
- W2014376482 hasConceptScore W2014376482C127313418 @default.
- W2014376482 hasConceptScore W2014376482C151730666 @default.
- W2014376482 hasConceptScore W2014376482C153127940 @default.
- W2014376482 hasConceptScore W2014376482C17409809 @default.
- W2014376482 hasConceptScore W2014376482C185592680 @default.
- W2014376482 hasConceptScore W2014376482C2776062231 @default.
- W2014376482 hasConceptScore W2014376482C2779229104 @default.
- W2014376482 hasConceptScore W2014376482C40724407 @default.
- W2014376482 hasLocation W20143764821 @default.
- W2014376482 hasOpenAccess W2014376482 @default.
- W2014376482 hasPrimaryLocation W20143764821 @default.
- W2014376482 hasRelatedWork W1983698699 @default.
- W2014376482 hasRelatedWork W1986053897 @default.
- W2014376482 hasRelatedWork W2038419966 @default.
- W2014376482 hasRelatedWork W2051406684 @default.
- W2014376482 hasRelatedWork W2073694591 @default.