Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014416265> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2014416265 endingPage "128" @default.
- W2014416265 startingPage "110" @default.
- W2014416265 abstract "Purpose To research the feasibility in using artificial neural networks (ANN) and response surfaces (RS) techniques for reliability analysis of concrete structures. Design/methodology/approach The evaluation of the failure probability and safety levels of structural systems is of extreme importance in structural design, mainly when the variables are eminently random. It is necessary to quantify and compare the importance of each one of these variables in the structural safety. RS and the ANN techniques have emerged attempting to solve complex and more elaborated problems. In this work, these two techniques are presented, and comparisons are carried out using the well‐known first‐order reliability method (FORM), with non‐linear limit state functions. The reliability analysis of reinforced concrete structure problems is specially considered taking into account the spatial variability of the material properties using random fields and the inherent non‐linearity. Findings It was observed that direct Monte Carlo simulation technique has a low performance in complex problems. FORM, RS and neural networks techniques are suitable alternatives, despite the loss of accuracy due to approximations characterizing these methods. Research limitations/implications The examples tested are limited to moderated large non‐linear reinforced concrete finite element models. Conclusions are drawn based on the examples. Practical implications Some remarks are outlined regarding the fact that RS and ANN techniques have presented equivalent precision levels. It is observed that in problems where the computational cost of structural evaluations (computing failure probability and safety levels) is high, these two techniques could improve the performance of the structural reliability analysis through simulation techniques. Originality/value This paper is important in the field of reliability analysis of concrete structures specially when neural networks or RS techniques are used." @default.
- W2014416265 created "2016-06-24" @default.
- W2014416265 creator A5011776339 @default.
- W2014416265 creator A5040068719 @default.
- W2014416265 date "2005-01-01" @default.
- W2014416265 modified "2023-10-14" @default.
- W2014416265 title "Reliability analysis of concrete structures with neural networks and response surfaces" @default.
- W2014416265 cites W1572480955 @default.
- W2014416265 cites W1965258535 @default.
- W2014416265 cites W1991848895 @default.
- W2014416265 cites W1996226468 @default.
- W2014416265 cites W2007560771 @default.
- W2014416265 cites W2008034786 @default.
- W2014416265 cites W2015839164 @default.
- W2014416265 cites W2022076538 @default.
- W2014416265 cites W2032264908 @default.
- W2014416265 cites W2054270976 @default.
- W2014416265 cites W2059935136 @default.
- W2014416265 cites W2062516874 @default.
- W2014416265 cites W2064903049 @default.
- W2014416265 cites W2089290565 @default.
- W2014416265 cites W2091401034 @default.
- W2014416265 cites W2136229059 @default.
- W2014416265 cites W4234095049 @default.
- W2014416265 cites W640984484 @default.
- W2014416265 doi "https://doi.org/10.1108/02644400510572433" @default.
- W2014416265 hasPublicationYear "2005" @default.
- W2014416265 type Work @default.
- W2014416265 sameAs 2014416265 @default.
- W2014416265 citedByCount "9" @default.
- W2014416265 countsByYear W20144162652014 @default.
- W2014416265 countsByYear W20144162652015 @default.
- W2014416265 countsByYear W20144162652018 @default.
- W2014416265 countsByYear W20144162652021 @default.
- W2014416265 countsByYear W20144162652022 @default.
- W2014416265 countsByYear W20144162652023 @default.
- W2014416265 crossrefType "journal-article" @default.
- W2014416265 hasAuthorship W2014416265A5011776339 @default.
- W2014416265 hasAuthorship W2014416265A5040068719 @default.
- W2014416265 hasConcept C105795698 @default.
- W2014416265 hasConcept C119857082 @default.
- W2014416265 hasConcept C121332964 @default.
- W2014416265 hasConcept C122123141 @default.
- W2014416265 hasConcept C127413603 @default.
- W2014416265 hasConcept C134306372 @default.
- W2014416265 hasConcept C135628077 @default.
- W2014416265 hasConcept C151201525 @default.
- W2014416265 hasConcept C163258240 @default.
- W2014416265 hasConcept C16995789 @default.
- W2014416265 hasConcept C19499675 @default.
- W2014416265 hasConcept C200601418 @default.
- W2014416265 hasConcept C33923547 @default.
- W2014416265 hasConcept C41008148 @default.
- W2014416265 hasConcept C43214815 @default.
- W2014416265 hasConcept C50644808 @default.
- W2014416265 hasConcept C62520636 @default.
- W2014416265 hasConcept C66938386 @default.
- W2014416265 hasConcept C88282795 @default.
- W2014416265 hasConceptScore W2014416265C105795698 @default.
- W2014416265 hasConceptScore W2014416265C119857082 @default.
- W2014416265 hasConceptScore W2014416265C121332964 @default.
- W2014416265 hasConceptScore W2014416265C122123141 @default.
- W2014416265 hasConceptScore W2014416265C127413603 @default.
- W2014416265 hasConceptScore W2014416265C134306372 @default.
- W2014416265 hasConceptScore W2014416265C135628077 @default.
- W2014416265 hasConceptScore W2014416265C151201525 @default.
- W2014416265 hasConceptScore W2014416265C163258240 @default.
- W2014416265 hasConceptScore W2014416265C16995789 @default.
- W2014416265 hasConceptScore W2014416265C19499675 @default.
- W2014416265 hasConceptScore W2014416265C200601418 @default.
- W2014416265 hasConceptScore W2014416265C33923547 @default.
- W2014416265 hasConceptScore W2014416265C41008148 @default.
- W2014416265 hasConceptScore W2014416265C43214815 @default.
- W2014416265 hasConceptScore W2014416265C50644808 @default.
- W2014416265 hasConceptScore W2014416265C62520636 @default.
- W2014416265 hasConceptScore W2014416265C66938386 @default.
- W2014416265 hasConceptScore W2014416265C88282795 @default.
- W2014416265 hasIssue "1" @default.
- W2014416265 hasLocation W20144162651 @default.
- W2014416265 hasOpenAccess W2014416265 @default.
- W2014416265 hasPrimaryLocation W20144162651 @default.
- W2014416265 hasRelatedWork W2106536410 @default.
- W2014416265 hasRelatedWork W2167870875 @default.
- W2014416265 hasRelatedWork W2382840032 @default.
- W2014416265 hasRelatedWork W2728513802 @default.
- W2014416265 hasRelatedWork W2787313303 @default.
- W2014416265 hasRelatedWork W2921149048 @default.
- W2014416265 hasRelatedWork W4220664679 @default.
- W2014416265 hasRelatedWork W4321384618 @default.
- W2014416265 hasRelatedWork W4360971046 @default.
- W2014416265 hasRelatedWork W2087720490 @default.
- W2014416265 hasVolume "22" @default.
- W2014416265 isParatext "false" @default.
- W2014416265 isRetracted "false" @default.
- W2014416265 magId "2014416265" @default.
- W2014416265 workType "article" @default.