Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014418634> ?p ?o ?g. }
- W2014418634 endingPage "175" @default.
- W2014418634 startingPage "167" @default.
- W2014418634 abstract "Neurodegenerative disorders, such as Alzheimer's disease, are associated with changes in multiple neuroimaging and biological measures. These may provide complementary information for diagnosis and prognosis. We present a multi-modality classification framework in which manifolds are constructed based on pairwise similarity measures derived from random forest classifiers. Similarities from multiple modalities are combined to generate an embedding that simultaneously encodes information about all the available features. Multi-modality classification is then performed using coordinates from this joint embedding. We evaluate the proposed framework by application to neuroimaging and biological data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Features include regional MRI volumes, voxel-based FDG-PET signal intensities, CSF biomarker measures, and categorical genetic information. Classification based on the joint embedding constructed using information from all four modalities out-performs the classification based on any individual modality for comparisons between Alzheimer's disease patients and healthy controls, as well as between mild cognitive impairment patients and healthy controls. Based on the joint embedding, we achieve classification accuracies of 89% between Alzheimer's disease patients and healthy controls, and 75% between mild cognitive impairment patients and healthy controls. These results are comparable with those reported in other recent studies using multi-kernel learning. Random forests provide consistent pairwise similarity measures for multiple modalities, thus facilitating the combination of different types of feature data. We demonstrate this by application to data in which the number of features differs by several orders of magnitude between modalities. Random forest classifiers extend naturally to multi-class problems, and the framework described here could be applied to distinguish between multiple patient groups in the future." @default.
- W2014418634 created "2016-06-24" @default.
- W2014418634 creator A5011834074 @default.
- W2014418634 creator A5019749644 @default.
- W2014418634 creator A5028377995 @default.
- W2014418634 creator A5045287606 @default.
- W2014418634 creator A5083763339 @default.
- W2014418634 date "2013-01-01" @default.
- W2014418634 modified "2023-10-15" @default.
- W2014418634 title "Random forest-based similarity measures for multi-modal classification of Alzheimer's disease" @default.
- W2014418634 cites W1510314685 @default.
- W2014418634 cites W1963939294 @default.
- W2014418634 cites W1968358515 @default.
- W2014418634 cites W1969787718 @default.
- W2014418634 cites W1976473223 @default.
- W2014418634 cites W1982341565 @default.
- W2014418634 cites W1985659221 @default.
- W2014418634 cites W1992054897 @default.
- W2014418634 cites W1993436046 @default.
- W2014418634 cites W2000716207 @default.
- W2014418634 cites W2001141328 @default.
- W2014418634 cites W2010176747 @default.
- W2014418634 cites W2013391120 @default.
- W2014418634 cites W2015259521 @default.
- W2014418634 cites W2016228161 @default.
- W2014418634 cites W2020281498 @default.
- W2014418634 cites W2021833436 @default.
- W2014418634 cites W2027550281 @default.
- W2014418634 cites W2028094999 @default.
- W2014418634 cites W2028436804 @default.
- W2014418634 cites W2036288989 @default.
- W2014418634 cites W2036362108 @default.
- W2014418634 cites W2048674585 @default.
- W2014418634 cites W2049546272 @default.
- W2014418634 cites W2056516077 @default.
- W2014418634 cites W2071671724 @default.
- W2014418634 cites W2097308346 @default.
- W2014418634 cites W2100377941 @default.
- W2014418634 cites W2101282194 @default.
- W2014418634 cites W2104048700 @default.
- W2014418634 cites W2108475007 @default.
- W2014418634 cites W2112324137 @default.
- W2014418634 cites W2113242816 @default.
- W2014418634 cites W2115017507 @default.
- W2014418634 cites W2118987707 @default.
- W2014418634 cites W2119842880 @default.
- W2014418634 cites W2120240539 @default.
- W2014418634 cites W2122632568 @default.
- W2014418634 cites W2128251808 @default.
- W2014418634 cites W2129497119 @default.
- W2014418634 cites W2129965408 @default.
- W2014418634 cites W2140652743 @default.
- W2014418634 cites W2145661921 @default.
- W2014418634 cites W2146089088 @default.
- W2014418634 cites W2146272386 @default.
- W2014418634 cites W2146980616 @default.
- W2014418634 cites W2147354849 @default.
- W2014418634 cites W2153171432 @default.
- W2014418634 cites W2154394735 @default.
- W2014418634 cites W2155784539 @default.
- W2014418634 cites W2157412686 @default.
- W2014418634 cites W2159122349 @default.
- W2014418634 cites W2161737267 @default.
- W2014418634 cites W2162313268 @default.
- W2014418634 cites W2167720733 @default.
- W2014418634 cites W2168193316 @default.
- W2014418634 cites W2171225117 @default.
- W2014418634 cites W2582524520 @default.
- W2014418634 cites W2911964244 @default.
- W2014418634 cites W4212883601 @default.
- W2014418634 cites W4230920194 @default.
- W2014418634 cites W4249565903 @default.
- W2014418634 cites W4293171766 @default.
- W2014418634 doi "https://doi.org/10.1016/j.neuroimage.2012.09.065" @default.
- W2014418634 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3516432" @default.
- W2014418634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23041336" @default.
- W2014418634 hasPublicationYear "2013" @default.
- W2014418634 type Work @default.
- W2014418634 sameAs 2014418634 @default.
- W2014418634 citedByCount "351" @default.
- W2014418634 countsByYear W20144186342012 @default.
- W2014418634 countsByYear W20144186342013 @default.
- W2014418634 countsByYear W20144186342014 @default.
- W2014418634 countsByYear W20144186342015 @default.
- W2014418634 countsByYear W20144186342016 @default.
- W2014418634 countsByYear W20144186342017 @default.
- W2014418634 countsByYear W20144186342018 @default.
- W2014418634 countsByYear W20144186342019 @default.
- W2014418634 countsByYear W20144186342020 @default.
- W2014418634 countsByYear W20144186342021 @default.
- W2014418634 countsByYear W20144186342022 @default.
- W2014418634 countsByYear W20144186342023 @default.
- W2014418634 crossrefType "journal-article" @default.
- W2014418634 hasAuthorship W2014418634A5011834074 @default.
- W2014418634 hasAuthorship W2014418634A5019749644 @default.
- W2014418634 hasAuthorship W2014418634A5028377995 @default.
- W2014418634 hasAuthorship W2014418634A5045287606 @default.
- W2014418634 hasAuthorship W2014418634A5083763339 @default.