Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014530379> ?p ?o ?g. }
- W2014530379 endingPage "380" @default.
- W2014530379 startingPage "367" @default.
- W2014530379 abstract "Gaussian process (GP) is a Bayesian nonparametric regression model, showing good performance in various applications. However, during its model-tuning procedure, the GP implementation suffers from numerous covariance-matrix inversions of expensive O(N3) operations, where N is the matrix dimension. In this article, we propose using the quasi-Newton BFGS O(N2)-operation formula to approximate/replace recursively the inverse of covariance matrix at every iteration. The implementation accuracy is guaranteed carefully by a matrix-trace criterion and by the restarts technique to generate good initial guesses. A number of numerical tests are then performed based on the sinusoidal regression example and the Wiener–Hammerstein identification example. It is shown that by using the proposed implementation, more than 80% O(N3) operations could be eliminated, and a typical speedup of 5–9 could be achieved as compared to the standard maximum-likelihood-estimation (MLE) implementation commonly used in Gaussian process regression." @default.
- W2014530379 created "2016-06-24" @default.
- W2014530379 creator A5053064477 @default.
- W2014530379 creator A5085704207 @default.
- W2014530379 date "2007-01-01" @default.
- W2014530379 modified "2023-10-12" @default.
- W2014530379 title "O(N2)-Operation Approximation of Covariance Matrix Inverse in Gaussian Process Regression Based on Quasi-Newton BFGS Method" @default.
- W2014530379 cites W147998453 @default.
- W2014530379 cites W1484735710 @default.
- W2014530379 cites W1512149552 @default.
- W2014530379 cites W1547628305 @default.
- W2014530379 cites W1572104494 @default.
- W2014530379 cites W1618393386 @default.
- W2014530379 cites W1648445109 @default.
- W2014530379 cites W1936384484 @default.
- W2014530379 cites W1981039871 @default.
- W2014530379 cites W1985101862 @default.
- W2014530379 cites W2037258733 @default.
- W2014530379 cites W2060624994 @default.
- W2014530379 cites W2069752241 @default.
- W2014530379 cites W2077658674 @default.
- W2014530379 cites W2091917610 @default.
- W2014530379 cites W2098626000 @default.
- W2014530379 cites W2101482846 @default.
- W2014530379 cites W2117063635 @default.
- W2014530379 cites W2119514858 @default.
- W2014530379 cites W2129564505 @default.
- W2014530379 cites W2137956165 @default.
- W2014530379 cites W2143022286 @default.
- W2014530379 cites W2153202134 @default.
- W2014530379 cites W2158831443 @default.
- W2014530379 cites W2486824498 @default.
- W2014530379 cites W2981264952 @default.
- W2014530379 cites W46135816 @default.
- W2014530379 doi "https://doi.org/10.1080/03610910601161298" @default.
- W2014530379 hasPublicationYear "2007" @default.
- W2014530379 type Work @default.
- W2014530379 sameAs 2014530379 @default.
- W2014530379 citedByCount "78" @default.
- W2014530379 countsByYear W20145303792012 @default.
- W2014530379 countsByYear W20145303792013 @default.
- W2014530379 countsByYear W20145303792014 @default.
- W2014530379 countsByYear W20145303792015 @default.
- W2014530379 countsByYear W20145303792016 @default.
- W2014530379 countsByYear W20145303792017 @default.
- W2014530379 countsByYear W20145303792018 @default.
- W2014530379 countsByYear W20145303792019 @default.
- W2014530379 countsByYear W20145303792020 @default.
- W2014530379 countsByYear W20145303792021 @default.
- W2014530379 countsByYear W20145303792022 @default.
- W2014530379 countsByYear W20145303792023 @default.
- W2014530379 crossrefType "journal-article" @default.
- W2014530379 hasAuthorship W2014530379A5053064477 @default.
- W2014530379 hasAuthorship W2014530379A5085704207 @default.
- W2014530379 hasConcept C105795698 @default.
- W2014530379 hasConcept C106487976 @default.
- W2014530379 hasConcept C11413529 @default.
- W2014530379 hasConcept C114954040 @default.
- W2014530379 hasConcept C121332964 @default.
- W2014530379 hasConcept C126255220 @default.
- W2014530379 hasConcept C132721684 @default.
- W2014530379 hasConcept C137250428 @default.
- W2014530379 hasConcept C138885662 @default.
- W2014530379 hasConcept C151319957 @default.
- W2014530379 hasConcept C158622935 @default.
- W2014530379 hasConcept C159985019 @default.
- W2014530379 hasConcept C163716315 @default.
- W2014530379 hasConcept C178650346 @default.
- W2014530379 hasConcept C180877172 @default.
- W2014530379 hasConcept C185142706 @default.
- W2014530379 hasConcept C192562407 @default.
- W2014530379 hasConcept C207467116 @default.
- W2014530379 hasConcept C2524010 @default.
- W2014530379 hasConcept C28826006 @default.
- W2014530379 hasConcept C31258907 @default.
- W2014530379 hasConcept C33923547 @default.
- W2014530379 hasConcept C41008148 @default.
- W2014530379 hasConcept C41895202 @default.
- W2014530379 hasConcept C61326573 @default.
- W2014530379 hasConcept C62520636 @default.
- W2014530379 hasConcept C75291252 @default.
- W2014530379 hasConcept C85189116 @default.
- W2014530379 hasConceptScore W2014530379C105795698 @default.
- W2014530379 hasConceptScore W2014530379C106487976 @default.
- W2014530379 hasConceptScore W2014530379C11413529 @default.
- W2014530379 hasConceptScore W2014530379C114954040 @default.
- W2014530379 hasConceptScore W2014530379C121332964 @default.
- W2014530379 hasConceptScore W2014530379C126255220 @default.
- W2014530379 hasConceptScore W2014530379C132721684 @default.
- W2014530379 hasConceptScore W2014530379C137250428 @default.
- W2014530379 hasConceptScore W2014530379C138885662 @default.
- W2014530379 hasConceptScore W2014530379C151319957 @default.
- W2014530379 hasConceptScore W2014530379C158622935 @default.
- W2014530379 hasConceptScore W2014530379C159985019 @default.
- W2014530379 hasConceptScore W2014530379C163716315 @default.
- W2014530379 hasConceptScore W2014530379C178650346 @default.
- W2014530379 hasConceptScore W2014530379C180877172 @default.
- W2014530379 hasConceptScore W2014530379C185142706 @default.