Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014594785> ?p ?o ?g. }
- W2014594785 endingPage "e1000054" @default.
- W2014594785 startingPage "e1000054" @default.
- W2014594785 abstract "Proteins do not carry out their functions alone. Instead, they often act by participating in macromolecular complexes and play different functional roles depending on the other members of the complex. It is therefore interesting to identify co-complex relationships. Although protein complexes can be identified in a high-throughput manner by experimental technologies such as affinity purification coupled with mass spectrometry (APMS), these large-scale datasets often suffer from high false positive and false negative rates. Here, we present a computational method that predicts co-complexed protein pair (CCPP) relationships using kernel methods from heterogeneous data sources. We show that a diffusion kernel based on random walks on the full network topology yields good performance in predicting CCPPs from protein interaction networks. In the setting of direct ranking, a diffusion kernel performs much better than the mutual clustering coefficient. In the setting of SVM classifiers, a diffusion kernel performs much better than a linear kernel. We also show that combination of complementary information improves the performance of our CCPP recognizer. A summation of three diffusion kernels based on two-hybrid, APMS, and genetic interaction networks and three sequence kernels achieves better performance than the sequence kernels or diffusion kernels alone. Inclusion of additional features achieves a still better ROC50 of 0.937. Assuming a negative-to-positive ratio of 600∶1, the final classifier achieves 89.3% coverage at an estimated false discovery rate of 10%. Finally, we applied our prediction method to two recently described APMS datasets. We find that our predicted positives are highly enriched with CCPPs that are identified by both datasets, suggesting that our method successfully identifies true CCPPs. An SVM classifier trained from heterogeneous data sources provides accurate predictions of CCPPs in yeast. This computational method thereby provides an inexpensive method for identifying protein complexes that extends and complements high-throughput experimental data." @default.
- W2014594785 created "2016-06-24" @default.
- W2014594785 creator A5021318738 @default.
- W2014594785 creator A5057375933 @default.
- W2014594785 date "2008-04-18" @default.
- W2014594785 modified "2023-10-06" @default.
- W2014594785 title "Predicting Co-Complexed Protein Pairs from Heterogeneous Data" @default.
- W2014594785 cites W1964940342 @default.
- W2014594785 cites W1968453920 @default.
- W2014594785 cites W1973116270 @default.
- W2014594785 cites W1983034694 @default.
- W2014594785 cites W2008429193 @default.
- W2014594785 cites W2021025020 @default.
- W2014594785 cites W2045131140 @default.
- W2014594785 cites W2050721857 @default.
- W2014594785 cites W2053906518 @default.
- W2014594785 cites W2065304353 @default.
- W2014594785 cites W2074405508 @default.
- W2014594785 cites W2080922074 @default.
- W2014594785 cites W2084619201 @default.
- W2014594785 cites W2099862356 @default.
- W2014594785 cites W2100827857 @default.
- W2014594785 cites W2103017472 @default.
- W2014594785 cites W2103453943 @default.
- W2014594785 cites W2107026830 @default.
- W2014594785 cites W2109715166 @default.
- W2014594785 cites W2112322820 @default.
- W2014594785 cites W2116117181 @default.
- W2014594785 cites W2116447934 @default.
- W2014594785 cites W2123280311 @default.
- W2014594785 cites W2126602684 @default.
- W2014594785 cites W2127637605 @default.
- W2014594785 cites W2129448726 @default.
- W2014594785 cites W2133138357 @default.
- W2014594785 cites W2135951244 @default.
- W2014594785 cites W2136957665 @default.
- W2014594785 cites W2137683543 @default.
- W2014594785 cites W2137786672 @default.
- W2014594785 cites W2146264532 @default.
- W2014594785 cites W2147693153 @default.
- W2014594785 cites W2149310258 @default.
- W2014594785 cites W2150452800 @default.
- W2014594785 cites W2158714788 @default.
- W2014594785 cites W2159460045 @default.
- W2014594785 cites W2159518929 @default.
- W2014594785 cites W2161444669 @default.
- W2014594785 cites W2163485494 @default.
- W2014594785 cites W2163510866 @default.
- W2014594785 cites W2164813401 @default.
- W2014594785 cites W2165011536 @default.
- W2014594785 cites W2166020074 @default.
- W2014594785 cites W2166558964 @default.
- W2014594785 cites W2166574880 @default.
- W2014594785 cites W2169805130 @default.
- W2014594785 doi "https://doi.org/10.1371/journal.pcbi.1000054" @default.
- W2014594785 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2275314" @default.
- W2014594785 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18421371" @default.
- W2014594785 hasPublicationYear "2008" @default.
- W2014594785 type Work @default.
- W2014594785 sameAs 2014594785 @default.
- W2014594785 citedByCount "71" @default.
- W2014594785 countsByYear W20145947852012 @default.
- W2014594785 countsByYear W20145947852013 @default.
- W2014594785 countsByYear W20145947852014 @default.
- W2014594785 countsByYear W20145947852015 @default.
- W2014594785 countsByYear W20145947852016 @default.
- W2014594785 countsByYear W20145947852017 @default.
- W2014594785 countsByYear W20145947852018 @default.
- W2014594785 countsByYear W20145947852019 @default.
- W2014594785 countsByYear W20145947852021 @default.
- W2014594785 countsByYear W20145947852022 @default.
- W2014594785 crossrefType "journal-article" @default.
- W2014594785 hasAuthorship W2014594785A5021318738 @default.
- W2014594785 hasAuthorship W2014594785A5057375933 @default.
- W2014594785 hasBestOaLocation W20145947851 @default.
- W2014594785 hasConcept C105795698 @default.
- W2014594785 hasConcept C11413529 @default.
- W2014594785 hasConcept C114614502 @default.
- W2014594785 hasConcept C121194460 @default.
- W2014594785 hasConcept C12267149 @default.
- W2014594785 hasConcept C124101348 @default.
- W2014594785 hasConcept C153180895 @default.
- W2014594785 hasConcept C154945302 @default.
- W2014594785 hasConcept C33923547 @default.
- W2014594785 hasConcept C41008148 @default.
- W2014594785 hasConcept C64869954 @default.
- W2014594785 hasConcept C73555534 @default.
- W2014594785 hasConcept C74193536 @default.
- W2014594785 hasConcept C95623464 @default.
- W2014594785 hasConceptScore W2014594785C105795698 @default.
- W2014594785 hasConceptScore W2014594785C11413529 @default.
- W2014594785 hasConceptScore W2014594785C114614502 @default.
- W2014594785 hasConceptScore W2014594785C121194460 @default.
- W2014594785 hasConceptScore W2014594785C12267149 @default.
- W2014594785 hasConceptScore W2014594785C124101348 @default.
- W2014594785 hasConceptScore W2014594785C153180895 @default.
- W2014594785 hasConceptScore W2014594785C154945302 @default.
- W2014594785 hasConceptScore W2014594785C33923547 @default.