Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014602807> ?p ?o ?g. }
- W2014602807 endingPage "340" @default.
- W2014602807 startingPage "330" @default.
- W2014602807 abstract "Background aims Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. Methods We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. Results In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. Conclusions These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells. Microvesicles (MV) shed from the plasma membrane of eukaryotic cells, including human embryonic stem cells (hESC), contain proteins, lipids and RNA and serve as mediators of cell-to-cell communication. However, they may also contain immunogenic membrane domains and infectious particles acquired from xenogenic components of the culture milieu. Therefore, MV represent a potential risk for clinical application of cell therapy. We tested the ability of hESC and their most commonly used feeder cells, mouse embryonic fibroblasts (MEF), to produce MV. We found that hESC are potent producers of MV, whereas mitotically inactivated MEF do not produce any detectable MV. We therefore employed a combined proteomic approach to identify the molecules that constitute the major components of MV from hESC maintained in a standard culture setting with xenogenic feeder cells. In purified MV fractions, we identified a total of 22 proteins, including five unique protein species that are known to be highly expressed in invasive cancers and participate in cellular activation, metastasis and inhibition of apoptosis. Moreover, we found that hESC-derived MV contained the immunogenic agents apolipoprotein and transferrin, a source of Neu5Gc, as well as mouse retroviral Gag protein. These findings indicate that MV represent a mechanism by which hESC communicate; however, they also serve as potential carriers of immunogenic and pathogenic compounds acquired from environment. Our results highlight a potential danger regarding the use of hESC that have previously been exposed to animal proteins and cells." @default.
- W2014602807 created "2016-06-24" @default.
- W2014602807 creator A5019949740 @default.
- W2014602807 creator A5020415828 @default.
- W2014602807 creator A5033872292 @default.
- W2014602807 creator A5034718369 @default.
- W2014602807 creator A5035172974 @default.
- W2014602807 creator A5049883499 @default.
- W2014602807 creator A5058610502 @default.
- W2014602807 creator A5080479735 @default.
- W2014602807 creator A5088336999 @default.
- W2014602807 creator A5090371440 @default.
- W2014602807 date "2009-01-01" @default.
- W2014602807 modified "2023-10-01" @default.
- W2014602807 title "Proteomic profiling of human embryonic stem cell-derived microvesicles reveals a risk of transfer of proteins of bovine and mouse origin" @default.
- W2014602807 cites W1539711621 @default.
- W2014602807 cites W1571387405 @default.
- W2014602807 cites W165853039 @default.
- W2014602807 cites W1964210355 @default.
- W2014602807 cites W1966689494 @default.
- W2014602807 cites W1967367827 @default.
- W2014602807 cites W1977538788 @default.
- W2014602807 cites W1984372518 @default.
- W2014602807 cites W1984558986 @default.
- W2014602807 cites W1987656271 @default.
- W2014602807 cites W1987821048 @default.
- W2014602807 cites W1995622771 @default.
- W2014602807 cites W1999715144 @default.
- W2014602807 cites W2004152842 @default.
- W2014602807 cites W2007743089 @default.
- W2014602807 cites W2012890384 @default.
- W2014602807 cites W2021861291 @default.
- W2014602807 cites W2030383998 @default.
- W2014602807 cites W2032278237 @default.
- W2014602807 cites W2045583901 @default.
- W2014602807 cites W2054792986 @default.
- W2014602807 cites W2059317606 @default.
- W2014602807 cites W2061898713 @default.
- W2014602807 cites W2063910973 @default.
- W2014602807 cites W2073706234 @default.
- W2014602807 cites W2077019670 @default.
- W2014602807 cites W2077049963 @default.
- W2014602807 cites W2078594804 @default.
- W2014602807 cites W2084201375 @default.
- W2014602807 cites W2084687787 @default.
- W2014602807 cites W2086269774 @default.
- W2014602807 cites W2086275775 @default.
- W2014602807 cites W2092632463 @default.
- W2014602807 cites W2102453345 @default.
- W2014602807 cites W2119098947 @default.
- W2014602807 cites W2120121992 @default.
- W2014602807 cites W2121247045 @default.
- W2014602807 cites W2125463628 @default.
- W2014602807 cites W2132209006 @default.
- W2014602807 cites W2141759179 @default.
- W2014602807 cites W2144438046 @default.
- W2014602807 cites W2150761119 @default.
- W2014602807 cites W2151487778 @default.
- W2014602807 cites W2154637790 @default.
- W2014602807 cites W2155603410 @default.
- W2014602807 cites W2162159732 @default.
- W2014602807 cites W2166785893 @default.
- W2014602807 cites W2188049663 @default.
- W2014602807 cites W32984090 @default.
- W2014602807 cites W78727764 @default.
- W2014602807 doi "https://doi.org/10.1080/14653240802595531" @default.
- W2014602807 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19401887" @default.
- W2014602807 hasPublicationYear "2009" @default.
- W2014602807 type Work @default.
- W2014602807 sameAs 2014602807 @default.
- W2014602807 citedByCount "23" @default.
- W2014602807 countsByYear W20146028072012 @default.
- W2014602807 countsByYear W20146028072013 @default.
- W2014602807 countsByYear W20146028072014 @default.
- W2014602807 countsByYear W20146028072015 @default.
- W2014602807 countsByYear W20146028072016 @default.
- W2014602807 countsByYear W20146028072017 @default.
- W2014602807 countsByYear W20146028072018 @default.
- W2014602807 countsByYear W20146028072019 @default.
- W2014602807 countsByYear W20146028072020 @default.
- W2014602807 countsByYear W20146028072021 @default.
- W2014602807 countsByYear W20146028072022 @default.
- W2014602807 crossrefType "journal-article" @default.
- W2014602807 hasAuthorship W2014602807A5019949740 @default.
- W2014602807 hasAuthorship W2014602807A5020415828 @default.
- W2014602807 hasAuthorship W2014602807A5033872292 @default.
- W2014602807 hasAuthorship W2014602807A5034718369 @default.
- W2014602807 hasAuthorship W2014602807A5035172974 @default.
- W2014602807 hasAuthorship W2014602807A5049883499 @default.
- W2014602807 hasAuthorship W2014602807A5058610502 @default.
- W2014602807 hasAuthorship W2014602807A5080479735 @default.
- W2014602807 hasAuthorship W2014602807A5088336999 @default.
- W2014602807 hasAuthorship W2014602807A5090371440 @default.
- W2014602807 hasConcept C104317684 @default.
- W2014602807 hasConcept C145059251 @default.
- W2014602807 hasConcept C145103041 @default.
- W2014602807 hasConcept C1491633281 @default.
- W2014602807 hasConcept C153911025 @default.