Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014606948> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2014606948 endingPage "165201" @default.
- W2014606948 startingPage "165201" @default.
- W2014606948 abstract "Algebraic mean field theory (AMFT) is a many-body physics modeling tool which firstly, is a generalization of Hartree–Fock mean field theory, and secondly, an application of the orbit method from Lie representation theory. The AMFT ansatz is that the physical system enjoys a dynamical group, which may be either a strong or a weak dynamical Lie group G. When G is a strong dynamical group, the quantum states are, by definition, vectors in one irreducible unitary representation (irrep) space, and AMFT is equivalent to the Kirillov orbit method for deducing properties of a representation from a direct geometrical analysis of the associated integral co-adjoint orbit. AMFT can be the only tractable method for analyzing some complex many-body systems when the dimension of the irrep space of the strong dynamical group is very large or infinite. When G is a weak dynamical group, the quantum states are not vectors in one irrep space, but AMFT applies if the densities of the states lie on one non-integral co-adjoint orbit. The computational simplicity of AMFT is the same for both strong and weak dynamical groups. This paper formulates AMFT explicitly for unitary Lie algebras, and applies the general method to the Lipkin–Meshkov–Glick (2) model and the Elliott (3) model. When the energy in the (3) theory is a rotational scalar function, Marsden–Weinstein reduction simplifies AMFT dynamics to a two-dimensional phase space." @default.
- W2014606948 created "2016-06-24" @default.
- W2014606948 creator A5088091167 @default.
- W2014606948 date "2011-03-24" @default.
- W2014606948 modified "2023-09-26" @default.
- W2014606948 title "Mean field theory for U(n) dynamical groups" @default.
- W2014606948 cites W1531036014 @default.
- W2014606948 cites W1542475302 @default.
- W2014606948 cites W1546827271 @default.
- W2014606948 cites W1659566724 @default.
- W2014606948 cites W1670510988 @default.
- W2014606948 cites W1965141418 @default.
- W2014606948 cites W1970766718 @default.
- W2014606948 cites W1970879777 @default.
- W2014606948 cites W1977829248 @default.
- W2014606948 cites W1987543654 @default.
- W2014606948 cites W1987725348 @default.
- W2014606948 cites W2001142321 @default.
- W2014606948 cites W2020949556 @default.
- W2014606948 cites W2022751508 @default.
- W2014606948 cites W2032970482 @default.
- W2014606948 cites W2046646140 @default.
- W2014606948 cites W2054725541 @default.
- W2014606948 cites W2055413638 @default.
- W2014606948 cites W2057381843 @default.
- W2014606948 cites W2067978078 @default.
- W2014606948 cites W2068340071 @default.
- W2014606948 cites W2082381312 @default.
- W2014606948 cites W2091624148 @default.
- W2014606948 cites W2101546653 @default.
- W2014606948 cites W2105090753 @default.
- W2014606948 cites W2133240766 @default.
- W2014606948 cites W2137969811 @default.
- W2014606948 cites W2145555901 @default.
- W2014606948 cites W2165257968 @default.
- W2014606948 cites W2230728100 @default.
- W2014606948 cites W4246559277 @default.
- W2014606948 cites W4254566809 @default.
- W2014606948 cites W49842708 @default.
- W2014606948 cites W560412551 @default.
- W2014606948 cites W72746368 @default.
- W2014606948 cites W966289496 @default.
- W2014606948 cites W1992034589 @default.
- W2014606948 doi "https://doi.org/10.1088/1751-8113/44/16/165201" @default.
- W2014606948 hasPublicationYear "2011" @default.
- W2014606948 type Work @default.
- W2014606948 sameAs 2014606948 @default.
- W2014606948 citedByCount "4" @default.
- W2014606948 countsByYear W20146069482013 @default.
- W2014606948 countsByYear W20146069482015 @default.
- W2014606948 countsByYear W20146069482019 @default.
- W2014606948 countsByYear W20146069482020 @default.
- W2014606948 crossrefType "journal-article" @default.
- W2014606948 hasAuthorship W2014606948A5088091167 @default.
- W2014606948 hasConcept C114614502 @default.
- W2014606948 hasConcept C121332964 @default.
- W2014606948 hasConcept C121864883 @default.
- W2014606948 hasConcept C150625730 @default.
- W2014606948 hasConcept C152365726 @default.
- W2014606948 hasConcept C202444582 @default.
- W2014606948 hasConcept C33923547 @default.
- W2014606948 hasConcept C37914503 @default.
- W2014606948 hasConcept C62520636 @default.
- W2014606948 hasConcept C9652623 @default.
- W2014606948 hasConceptScore W2014606948C114614502 @default.
- W2014606948 hasConceptScore W2014606948C121332964 @default.
- W2014606948 hasConceptScore W2014606948C121864883 @default.
- W2014606948 hasConceptScore W2014606948C150625730 @default.
- W2014606948 hasConceptScore W2014606948C152365726 @default.
- W2014606948 hasConceptScore W2014606948C202444582 @default.
- W2014606948 hasConceptScore W2014606948C33923547 @default.
- W2014606948 hasConceptScore W2014606948C37914503 @default.
- W2014606948 hasConceptScore W2014606948C62520636 @default.
- W2014606948 hasConceptScore W2014606948C9652623 @default.
- W2014606948 hasIssue "16" @default.
- W2014606948 hasLocation W20146069481 @default.
- W2014606948 hasOpenAccess W2014606948 @default.
- W2014606948 hasPrimaryLocation W20146069481 @default.
- W2014606948 hasRelatedWork W1978042415 @default.
- W2014606948 hasRelatedWork W1985218657 @default.
- W2014606948 hasRelatedWork W2017331178 @default.
- W2014606948 hasRelatedWork W2096753949 @default.
- W2014606948 hasRelatedWork W2924196703 @default.
- W2014606948 hasRelatedWork W2976797620 @default.
- W2014606948 hasRelatedWork W3086542228 @default.
- W2014606948 hasRelatedWork W3103234735 @default.
- W2014606948 hasRelatedWork W3106133691 @default.
- W2014606948 hasRelatedWork W4249580765 @default.
- W2014606948 hasVolume "44" @default.
- W2014606948 isParatext "false" @default.
- W2014606948 isRetracted "false" @default.
- W2014606948 magId "2014606948" @default.
- W2014606948 workType "article" @default.