Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014642191> ?p ?o ?g. }
- W2014642191 endingPage "611" @default.
- W2014642191 startingPage "598" @default.
- W2014642191 abstract "The clinical success of hyperthermia adjunct to radiotherapy depends on adequate temperature elevation in the tumor with minimal temperature rise in organs at risk. Existing technologies for thermal treatment of the cervix have limited spatial control or rapid energy falloff. The objective of this work is to develop an endocervical applicator using a linear array of multisectored tubular ultrasound transducers to provide 3-D conformal, locally targeted hyperthermia concomitant to radiotherapy in the uterine cervix. The catheter-based device is integrated within a HDR brachytherapy applicator to facilitate sequential and potentially simultaneous heat and radiation delivery.Treatment planning images from 35 patients who underwent HDR brachytherapy for locally advanced cervical cancer were inspected to assess the dimensions of radiation clinical target volumes (CTVs) and gross tumor volumes (GTVs) surrounding the cervix and the proximity of organs at risk. Biothermal simulation was used to identify applicator and catheter material parameters to adequately heat the cervix with minimal thermal dose accumulation in nontargeted structures. A family of ultrasound applicators was fabricated with two to three tubular transducers operating at 6.6-7.4 MHz that are unsectored (360 degrees), bisectored (2 x 180 degrees), or trisectored (3 x 120 degrees) for control of energy deposition in angle and along the device length in order to satisfy anatomical constraints. The device is housed in a 6 mm diameter PET catheter with cooling water flow for endocervical implantation. Devices were characterized by measuring acoustic efficiencies, rotational acoustic intensity distributions, and rotational temperature distributions in phantom.The CTV in HDR brachytherapy plans extends 20.5 +/- 5.0 mm from the endocervical tandem with the rectum and bladder typically <8 mm from the target boundary. The GTV extends 19.4 +/- 7.3 mm from the tandem. Simulations indicate that for 60 min treatments the applicator can heat to 41 degrees C and deliver > 5EM(43 degrees C) over 4-5 cm diameter with Tmax < 45 degrees C and 1 kg m(-3) s(-1) blood perfusion. The 41 degrees C contour diameter is reduced to 3-4 cm at 3 kg m(-3) s(-1) perfusion. Differential power control to transducer elements and sectors demonstrates tailoring of heating along the device length and in angle. Sector cuts are associated with a 14-47 degrees acoustic dead zone, depending on cut width, resulting in a approximately 2-4 degrees C temperature reduction within the dead zone below Tmax. Dead zones can be oriented for thermal protection of the rectum and bladder. Fabricated devices have acoustic efficiencies of 33.4%-51.8% with acoustic output that is well collimated in length, reflects the sectoring strategy, and is strongly correlated with temperature distributions.A catheter-based ultrasound applicator was developed for endocervical implantation with locally targeted, 3-D conformal thermal delivery to the uterine cervix. Feasibility of heating clinically relevant target volumes was demonstrated with power control along the device length and in angle to treat the cervix with minimal thermal dose delivery to the rectum and bladder." @default.
- W2014642191 created "2016-06-24" @default.
- W2014642191 creator A5007875006 @default.
- W2014642191 creator A5042728664 @default.
- W2014642191 creator A5054230478 @default.
- W2014642191 date "2011-01-10" @default.
- W2014642191 modified "2023-09-23" @default.
- W2014642191 title "Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma" @default.
- W2014642191 cites W1518488028 @default.
- W2014642191 cites W165602779 @default.
- W2014642191 cites W1968674372 @default.
- W2014642191 cites W1973588264 @default.
- W2014642191 cites W1988496461 @default.
- W2014642191 cites W1993742641 @default.
- W2014642191 cites W1997894141 @default.
- W2014642191 cites W2016204586 @default.
- W2014642191 cites W2020830322 @default.
- W2014642191 cites W2020942783 @default.
- W2014642191 cites W2020979018 @default.
- W2014642191 cites W2033090464 @default.
- W2014642191 cites W2035376883 @default.
- W2014642191 cites W2039714927 @default.
- W2014642191 cites W2046058077 @default.
- W2014642191 cites W2050741505 @default.
- W2014642191 cites W2052601231 @default.
- W2014642191 cites W2053428225 @default.
- W2014642191 cites W2054884916 @default.
- W2014642191 cites W2057449163 @default.
- W2014642191 cites W2066772370 @default.
- W2014642191 cites W2067182903 @default.
- W2014642191 cites W2074948462 @default.
- W2014642191 cites W2076721801 @default.
- W2014642191 cites W2086455241 @default.
- W2014642191 cites W2118419419 @default.
- W2014642191 cites W2118793921 @default.
- W2014642191 cites W2126796477 @default.
- W2014642191 cites W2136267489 @default.
- W2014642191 cites W2136493228 @default.
- W2014642191 cites W2148318042 @default.
- W2014642191 cites W2157568041 @default.
- W2014642191 cites W2159322809 @default.
- W2014642191 cites W2163550415 @default.
- W2014642191 cites W2164330601 @default.
- W2014642191 cites W2166015530 @default.
- W2014642191 cites W2170679986 @default.
- W2014642191 cites W2170940314 @default.
- W2014642191 cites W2326839159 @default.
- W2014642191 cites W4235786112 @default.
- W2014642191 cites W4239526824 @default.
- W2014642191 cites W4240461768 @default.
- W2014642191 cites W4241911275 @default.
- W2014642191 cites W69820516 @default.
- W2014642191 doi "https://doi.org/10.1118/1.3512803" @default.
- W2014642191 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3033875" @default.
- W2014642191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21452697" @default.
- W2014642191 hasPublicationYear "2011" @default.
- W2014642191 type Work @default.
- W2014642191 sameAs 2014642191 @default.
- W2014642191 citedByCount "19" @default.
- W2014642191 countsByYear W20146421912012 @default.
- W2014642191 countsByYear W20146421912013 @default.
- W2014642191 countsByYear W20146421912014 @default.
- W2014642191 countsByYear W20146421912015 @default.
- W2014642191 countsByYear W20146421912016 @default.
- W2014642191 countsByYear W20146421912017 @default.
- W2014642191 countsByYear W20146421912019 @default.
- W2014642191 countsByYear W20146421912020 @default.
- W2014642191 countsByYear W20146421912021 @default.
- W2014642191 countsByYear W20146421912022 @default.
- W2014642191 crossrefType "journal-article" @default.
- W2014642191 hasAuthorship W2014642191A5007875006 @default.
- W2014642191 hasAuthorship W2014642191A5042728664 @default.
- W2014642191 hasAuthorship W2014642191A5054230478 @default.
- W2014642191 hasBestOaLocation W20146421912 @default.
- W2014642191 hasConcept C104293457 @default.
- W2014642191 hasConcept C121608353 @default.
- W2014642191 hasConcept C126322002 @default.
- W2014642191 hasConcept C126838900 @default.
- W2014642191 hasConcept C136229726 @default.
- W2014642191 hasConcept C143753070 @default.
- W2014642191 hasConcept C192562407 @default.
- W2014642191 hasConcept C201645570 @default.
- W2014642191 hasConcept C2777416452 @default.
- W2014642191 hasConcept C2777740455 @default.
- W2014642191 hasConcept C2778220009 @default.
- W2014642191 hasConcept C2779949491 @default.
- W2014642191 hasConcept C2989005 @default.
- W2014642191 hasConcept C509974204 @default.
- W2014642191 hasConcept C71924100 @default.
- W2014642191 hasConceptScore W2014642191C104293457 @default.
- W2014642191 hasConceptScore W2014642191C121608353 @default.
- W2014642191 hasConceptScore W2014642191C126322002 @default.
- W2014642191 hasConceptScore W2014642191C126838900 @default.
- W2014642191 hasConceptScore W2014642191C136229726 @default.
- W2014642191 hasConceptScore W2014642191C143753070 @default.
- W2014642191 hasConceptScore W2014642191C192562407 @default.
- W2014642191 hasConceptScore W2014642191C201645570 @default.
- W2014642191 hasConceptScore W2014642191C2777416452 @default.