Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014648567> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2014648567 abstract "In this note we study the behavior of the dimension of the perfect derived category <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P e r f left-parenthesis upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>Perf</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=false>(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>operatorname {Perf}(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a dg-algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over a field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under a base field extension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K slash k> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>K/k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In particular, we show that the dimension of a perfect derived category is invariant under a separable algebraic extension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K slash k> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>K/k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. As an application we prove the following statement: Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a self-injective algebra over a perfect field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the dimension of the stable category <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=ModifyingBelow mod With bar upper A> <mml:semantics> <mml:mrow> <mml:munder> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtext>mod</mml:mtext> </mml:mrow> <mml:mo>_<!-- _ --></mml:mo> </mml:munder> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>underline {textrm {mod}}A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=0> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=application/x-tex>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is of finite representation type. This theorem is proved by M. Yoshiwaki in the case when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=k> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=application/x-tex>k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an algebraically closed field. Our proof depends on his result." @default.
- W2014648567 created "2016-06-24" @default.
- W2014648567 creator A5042754783 @default.
- W2014648567 date "2013-09-06" @default.
- W2014648567 modified "2023-09-26" @default.
- W2014648567 title "A note on dimension of triangulated categories" @default.
- W2014648567 cites W1595937157 @default.
- W2014648567 cites W2079158453 @default.
- W2014648567 cites W2161579213 @default.
- W2014648567 cites W2171658581 @default.
- W2014648567 doi "https://doi.org/10.1090/s0002-9939-2013-11723-5" @default.
- W2014648567 hasPublicationYear "2013" @default.
- W2014648567 type Work @default.
- W2014648567 sameAs 2014648567 @default.
- W2014648567 citedByCount "9" @default.
- W2014648567 countsByYear W20146485672014 @default.
- W2014648567 countsByYear W20146485672015 @default.
- W2014648567 countsByYear W20146485672019 @default.
- W2014648567 countsByYear W20146485672020 @default.
- W2014648567 crossrefType "journal-article" @default.
- W2014648567 hasAuthorship W2014648567A5042754783 @default.
- W2014648567 hasBestOaLocation W20146485671 @default.
- W2014648567 hasConcept C114614502 @default.
- W2014648567 hasConcept C33676613 @default.
- W2014648567 hasConcept C33923547 @default.
- W2014648567 hasConceptScore W2014648567C114614502 @default.
- W2014648567 hasConceptScore W2014648567C33676613 @default.
- W2014648567 hasConceptScore W2014648567C33923547 @default.
- W2014648567 hasLocation W20146485671 @default.
- W2014648567 hasOpenAccess W2014648567 @default.
- W2014648567 hasPrimaryLocation W20146485671 @default.
- W2014648567 hasRelatedWork W130674528 @default.
- W2014648567 hasRelatedWork W134263319 @default.
- W2014648567 hasRelatedWork W1592598817 @default.
- W2014648567 hasRelatedWork W166521992 @default.
- W2014648567 hasRelatedWork W1965518091 @default.
- W2014648567 hasRelatedWork W1972760901 @default.
- W2014648567 hasRelatedWork W1985127815 @default.
- W2014648567 hasRelatedWork W1992724727 @default.
- W2014648567 hasRelatedWork W2016365906 @default.
- W2014648567 hasRelatedWork W2029850961 @default.
- W2014648567 hasRelatedWork W2044998369 @default.
- W2014648567 hasRelatedWork W2059530276 @default.
- W2014648567 hasRelatedWork W2080440993 @default.
- W2014648567 hasRelatedWork W2089456030 @default.
- W2014648567 hasRelatedWork W2130294404 @default.
- W2014648567 hasRelatedWork W261408286 @default.
- W2014648567 hasRelatedWork W2736140702 @default.
- W2014648567 hasRelatedWork W2963985228 @default.
- W2014648567 hasRelatedWork W2994068457 @default.
- W2014648567 hasRelatedWork W193154287 @default.
- W2014648567 isParatext "false" @default.
- W2014648567 isRetracted "false" @default.
- W2014648567 magId "2014648567" @default.
- W2014648567 workType "article" @default.