Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014685742> ?p ?o ?g. }
- W2014685742 endingPage "14" @default.
- W2014685742 startingPage "1" @default.
- W2014685742 abstract "CR Climate Research Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials CR 41:1-14 (2010) - DOI: https://doi.org/10.3354/cr00836 Use of multi-model ensembles from global climate models for assessment of climate change impacts Mikhail A. Semenov*, Pierre Stratonovitch Centre for Mathematical and Computational Biology, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK *Email: mikhail.semenov@bbsrc.ac.uk ABSTRACT: Multi-model ensembles of climate predictions constructed by running several global climate models for a common set of experiments are available for impact assessment of climate change. Multi-model ensembles emphasize the uncertainty in climate predictions resulting from structural differences in the global climate models as well as uncertainty due to variations in initial conditions or model parameterisations. This paper describes a methodology of using multi-model ensembles from global climate models for impact assessments which require local-scale climate scenarios. The approach is based on the use of a weather generator capable of generating the local-scale daily climate scenarios used as an input by many process-based impact models. A new version of the LARS-WG weather generator, described in the paper, incorporates climate predictions from 15 climate models from the multi-model ensemble used in the IPCC Fourth Assessment Report (AR4). The use of the AR4 multi-model ensemble allows assessment of the range of uncertainty in the impacts of climate change resulting from the uncertainty in predications of climate. As an example, the impact of climate change on the probability of heat stress during flowering of wheat, which can result in significant yield losses, was assessed using local-scale climate scenarios in conjunction with a wheat simulation model at 4 European locations. The exploitation of much larger perturbed physics ensembles is also discussed. KEY WORDS: Weather generator · Probabilistic prediction · Uncertainty · IPCC AR4 · LARS-WG Full text in pdf format NextCite this article as: Semenov MA, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim Res 41:1-14. https://doi.org/10.3354/cr00836 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in CR Vol. 41, No. 1. Online publication date: January 20, 2010 Print ISSN: 0936-577X; Online ISSN: 1616-1572 Copyright © 2010 Inter-Research." @default.
- W2014685742 created "2016-06-24" @default.
- W2014685742 creator A5040503444 @default.
- W2014685742 creator A5091017953 @default.
- W2014685742 date "2010-01-20" @default.
- W2014685742 modified "2023-09-30" @default.
- W2014685742 title "Use of multi-model ensembles from global climate models for assessment of climate change impacts" @default.
- W2014685742 cites W1966807578 @default.
- W2014685742 cites W1978841483 @default.
- W2014685742 cites W1981579808 @default.
- W2014685742 cites W2018832642 @default.
- W2014685742 cites W2074337504 @default.
- W2014685742 cites W2092915768 @default.
- W2014685742 cites W2114977670 @default.
- W2014685742 cites W2147983357 @default.
- W2014685742 cites W2162204743 @default.
- W2014685742 doi "https://doi.org/10.3354/cr00836" @default.
- W2014685742 hasPublicationYear "2010" @default.
- W2014685742 type Work @default.
- W2014685742 sameAs 2014685742 @default.
- W2014685742 citedByCount "422" @default.
- W2014685742 countsByYear W20146857422012 @default.
- W2014685742 countsByYear W20146857422013 @default.
- W2014685742 countsByYear W20146857422014 @default.
- W2014685742 countsByYear W20146857422015 @default.
- W2014685742 countsByYear W20146857422016 @default.
- W2014685742 countsByYear W20146857422017 @default.
- W2014685742 countsByYear W20146857422018 @default.
- W2014685742 countsByYear W20146857422019 @default.
- W2014685742 countsByYear W20146857422020 @default.
- W2014685742 countsByYear W20146857422021 @default.
- W2014685742 countsByYear W20146857422022 @default.
- W2014685742 countsByYear W20146857422023 @default.
- W2014685742 crossrefType "journal-article" @default.
- W2014685742 hasAuthorship W2014685742A5040503444 @default.
- W2014685742 hasAuthorship W2014685742A5091017953 @default.
- W2014685742 hasBestOaLocation W20146857421 @default.
- W2014685742 hasConcept C114990195 @default.
- W2014685742 hasConcept C115343472 @default.
- W2014685742 hasConcept C127313418 @default.
- W2014685742 hasConcept C127413603 @default.
- W2014685742 hasConcept C132651083 @default.
- W2014685742 hasConcept C141452985 @default.
- W2014685742 hasConcept C146978453 @default.
- W2014685742 hasConcept C153294291 @default.
- W2014685742 hasConcept C168754636 @default.
- W2014685742 hasConcept C18903297 @default.
- W2014685742 hasConcept C204323151 @default.
- W2014685742 hasConcept C205649164 @default.
- W2014685742 hasConcept C2778755073 @default.
- W2014685742 hasConcept C39432304 @default.
- W2014685742 hasConcept C41008148 @default.
- W2014685742 hasConcept C41156917 @default.
- W2014685742 hasConcept C47665787 @default.
- W2014685742 hasConcept C48999079 @default.
- W2014685742 hasConcept C49204034 @default.
- W2014685742 hasConcept C54464151 @default.
- W2014685742 hasConcept C58640448 @default.
- W2014685742 hasConcept C86803240 @default.
- W2014685742 hasConceptScore W2014685742C114990195 @default.
- W2014685742 hasConceptScore W2014685742C115343472 @default.
- W2014685742 hasConceptScore W2014685742C127313418 @default.
- W2014685742 hasConceptScore W2014685742C127413603 @default.
- W2014685742 hasConceptScore W2014685742C132651083 @default.
- W2014685742 hasConceptScore W2014685742C141452985 @default.
- W2014685742 hasConceptScore W2014685742C146978453 @default.
- W2014685742 hasConceptScore W2014685742C153294291 @default.
- W2014685742 hasConceptScore W2014685742C168754636 @default.
- W2014685742 hasConceptScore W2014685742C18903297 @default.
- W2014685742 hasConceptScore W2014685742C204323151 @default.
- W2014685742 hasConceptScore W2014685742C205649164 @default.
- W2014685742 hasConceptScore W2014685742C2778755073 @default.
- W2014685742 hasConceptScore W2014685742C39432304 @default.
- W2014685742 hasConceptScore W2014685742C41008148 @default.
- W2014685742 hasConceptScore W2014685742C41156917 @default.
- W2014685742 hasConceptScore W2014685742C47665787 @default.
- W2014685742 hasConceptScore W2014685742C48999079 @default.
- W2014685742 hasConceptScore W2014685742C49204034 @default.
- W2014685742 hasConceptScore W2014685742C54464151 @default.
- W2014685742 hasConceptScore W2014685742C58640448 @default.
- W2014685742 hasConceptScore W2014685742C86803240 @default.
- W2014685742 hasLocation W20146857421 @default.
- W2014685742 hasOpenAccess W2014685742 @default.
- W2014685742 hasPrimaryLocation W20146857421 @default.
- W2014685742 hasRelatedWork W1649256018 @default.
- W2014685742 hasRelatedWork W1806772866 @default.
- W2014685742 hasRelatedWork W2057346367 @default.
- W2014685742 hasRelatedWork W2074882370 @default.
- W2014685742 hasRelatedWork W2162204743 @default.
- W2014685742 hasRelatedWork W2366904777 @default.
- W2014685742 hasRelatedWork W3006872663 @default.
- W2014685742 hasRelatedWork W3212566495 @default.
- W2014685742 hasRelatedWork W4232503410 @default.
- W2014685742 hasRelatedWork W4297517053 @default.
- W2014685742 hasVolume "41" @default.
- W2014685742 isParatext "false" @default.
- W2014685742 isRetracted "false" @default.
- W2014685742 magId "2014685742" @default.