Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014689238> ?p ?o ?g. }
- W2014689238 endingPage "9994" @default.
- W2014689238 startingPage "9981" @default.
- W2014689238 abstract "Two methods for thermal conductivity determinations on rock cores and fragments were tested on a suite of samples from the Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) superdeep drill hole in Germany. They were also compared with estimates of thermal conductivity using the mineral composition of the rock and physical well logs and with in situ thermal conductivity measurements. Laboratory methods provide reasonably precise determinations of the thermal conductivities of both solid core (±5%) and drill cuttings (±10%) at room temperature and pressure. The most common methods presently used for crystalline rocks are the steady state “divided‐bar” (DB) technique and the transient “half‐space” line source (LS). Sample preparation and measurement times are comparable for the DB and LS, with sample preparation being more time consuming on average. For isotropic rocks there is little to choose from between the two methods, which both give reliable values of conductivity in the vertical direction. The LS is easier to set up and use in field laboratory situations, which renders it the preferred method for field reconnaissance. The gneissic crystalline rocks penetrated by the KTB boreholes typically have anisotropy of the order of 10–20%. The DB provides unambiguous values of conductivity in a given direction, so its use is preferable for obtaining both principal conductivities and the vertical component. Anisotropy can be estimated using LS measurements in many different directions, but the potential for large random errors is much greater than with the more straightforward DB approach. For deep research wells the difficulties of extrapolating laboratory results to in situ conditions (particularly temperature) present additional obstacles to determining heat flow. Laboratory measurements of water‐saturated samples under in situ conditions, combined with in situ measurements and judicious use of calculations based on mineralogy and well log derived physical properties, can aid in the accurate characterization of thermal conductivity in deep wells. The application of different methods helped to link variations of heat flow with depth in the KTB hole to the anisotropy of thermal conductivity or thermal refraction and thus allowed the calculation of background heat flux in this geologically complex area." @default.
- W2014689238 created "2016-06-24" @default.
- W2014689238 creator A5052876510 @default.
- W2014689238 creator A5069136346 @default.
- W2014689238 date "1995-06-10" @default.
- W2014689238 modified "2023-10-06" @default.
- W2014689238 title "Determination of thermal conductivity for deep boreholes" @default.
- W2014689238 cites W1975030108 @default.
- W2014689238 cites W1976870970 @default.
- W2014689238 cites W1978985684 @default.
- W2014689238 cites W1983159570 @default.
- W2014689238 cites W1994754981 @default.
- W2014689238 cites W1995047663 @default.
- W2014689238 cites W1996162927 @default.
- W2014689238 cites W2003550312 @default.
- W2014689238 cites W2007979575 @default.
- W2014689238 cites W2008531548 @default.
- W2014689238 cites W2010219471 @default.
- W2014689238 cites W2010989907 @default.
- W2014689238 cites W2011308668 @default.
- W2014689238 cites W2027797661 @default.
- W2014689238 cites W2028313287 @default.
- W2014689238 cites W2029475801 @default.
- W2014689238 cites W2034955532 @default.
- W2014689238 cites W2039531906 @default.
- W2014689238 cites W2049871920 @default.
- W2014689238 cites W2050506343 @default.
- W2014689238 cites W2055194856 @default.
- W2014689238 cites W2061053358 @default.
- W2014689238 cites W2064490540 @default.
- W2014689238 cites W2066434629 @default.
- W2014689238 cites W2076103546 @default.
- W2014689238 cites W2077268453 @default.
- W2014689238 cites W2082725333 @default.
- W2014689238 cites W2091021867 @default.
- W2014689238 cites W2091934772 @default.
- W2014689238 cites W2106628985 @default.
- W2014689238 cites W2116450775 @default.
- W2014689238 cites W2122604585 @default.
- W2014689238 cites W2142204857 @default.
- W2014689238 cites W2151110708 @default.
- W2014689238 cites W2164489618 @default.
- W2014689238 cites W2165344936 @default.
- W2014689238 cites W2165785466 @default.
- W2014689238 cites W2226102083 @default.
- W2014689238 cites W2320885868 @default.
- W2014689238 cites W2491119987 @default.
- W2014689238 cites W3021187274 @default.
- W2014689238 cites W4211144169 @default.
- W2014689238 doi "https://doi.org/10.1029/95jb00960" @default.
- W2014689238 hasPublicationYear "1995" @default.
- W2014689238 type Work @default.
- W2014689238 sameAs 2014689238 @default.
- W2014689238 citedByCount "77" @default.
- W2014689238 countsByYear W20146892382012 @default.
- W2014689238 countsByYear W20146892382013 @default.
- W2014689238 countsByYear W20146892382014 @default.
- W2014689238 countsByYear W20146892382015 @default.
- W2014689238 countsByYear W20146892382016 @default.
- W2014689238 countsByYear W20146892382017 @default.
- W2014689238 countsByYear W20146892382018 @default.
- W2014689238 countsByYear W20146892382019 @default.
- W2014689238 countsByYear W20146892382020 @default.
- W2014689238 countsByYear W20146892382021 @default.
- W2014689238 countsByYear W20146892382022 @default.
- W2014689238 countsByYear W20146892382023 @default.
- W2014689238 crossrefType "journal-article" @default.
- W2014689238 hasAuthorship W2014689238A5052876510 @default.
- W2014689238 hasAuthorship W2014689238A5069136346 @default.
- W2014689238 hasConcept C120665830 @default.
- W2014689238 hasConcept C121332964 @default.
- W2014689238 hasConcept C127313418 @default.
- W2014689238 hasConcept C150560799 @default.
- W2014689238 hasConcept C159985019 @default.
- W2014689238 hasConcept C173736775 @default.
- W2014689238 hasConcept C184050105 @default.
- W2014689238 hasConcept C187320778 @default.
- W2014689238 hasConcept C191897082 @default.
- W2014689238 hasConcept C192562407 @default.
- W2014689238 hasConcept C199289684 @default.
- W2014689238 hasConcept C204530211 @default.
- W2014689238 hasConcept C37668627 @default.
- W2014689238 hasConcept C52119771 @default.
- W2014689238 hasConcept C8058405 @default.
- W2014689238 hasConcept C85725439 @default.
- W2014689238 hasConcept C97346530 @default.
- W2014689238 hasConcept C97355855 @default.
- W2014689238 hasConceptScore W2014689238C120665830 @default.
- W2014689238 hasConceptScore W2014689238C121332964 @default.
- W2014689238 hasConceptScore W2014689238C127313418 @default.
- W2014689238 hasConceptScore W2014689238C150560799 @default.
- W2014689238 hasConceptScore W2014689238C159985019 @default.
- W2014689238 hasConceptScore W2014689238C173736775 @default.
- W2014689238 hasConceptScore W2014689238C184050105 @default.
- W2014689238 hasConceptScore W2014689238C187320778 @default.
- W2014689238 hasConceptScore W2014689238C191897082 @default.
- W2014689238 hasConceptScore W2014689238C192562407 @default.
- W2014689238 hasConceptScore W2014689238C199289684 @default.