Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014701474> ?p ?o ?g. }
- W2014701474 endingPage "787" @default.
- W2014701474 startingPage "763" @default.
- W2014701474 abstract "We prove that the equation A4 + B2 = Cp has no solutions in coprime positive integers when p ≥ 211. The main step is to show that, for all sufficiently large primes p, every [inline-graphic xmlns:xlink=http://www.w3.org/1999/xlink xlink:href=02i /]-curve over an imaginary quadratic field K with a prime of potentially multiplicative reduction greater than 6 has a surjective mod p Galois representation. The bound on p depends on K and the degree of the isogeny between E and its Galois conjugate, but is independent of the choice of E. The proof of this theorem combines geometric arguments due to Mazur, Momose, Darmon, and Merel with an analytic estimate of the average special values of certain L-functions." @default.
- W2014701474 created "2016-06-24" @default.
- W2014701474 creator A5071941381 @default.
- W2014701474 date "2004-01-01" @default.
- W2014701474 modified "2023-10-18" @default.
- W2014701474 title "Galois representations attached to Q-curves and the generalized Fermat equation A 4 + B 2 = C p" @default.
- W2014701474 cites W1544003996 @default.
- W2014701474 cites W1545525543 @default.
- W2014701474 cites W1586485728 @default.
- W2014701474 cites W1590252182 @default.
- W2014701474 cites W1968901235 @default.
- W2014701474 cites W2000658662 @default.
- W2014701474 cites W2011844852 @default.
- W2014701474 cites W2015207053 @default.
- W2014701474 cites W2029392852 @default.
- W2014701474 cites W2033920420 @default.
- W2014701474 cites W2034354726 @default.
- W2014701474 cites W2051722679 @default.
- W2014701474 cites W2058247712 @default.
- W2014701474 cites W2073082930 @default.
- W2014701474 cites W2075505361 @default.
- W2014701474 cites W2095877551 @default.
- W2014701474 cites W2134617517 @default.
- W2014701474 cites W2172293890 @default.
- W2014701474 cites W2431007515 @default.
- W2014701474 cites W2950812342 @default.
- W2014701474 cites W567507864 @default.
- W2014701474 doi "https://doi.org/10.1353/ajm.2004.0027" @default.
- W2014701474 hasPublicationYear "2004" @default.
- W2014701474 type Work @default.
- W2014701474 sameAs 2014701474 @default.
- W2014701474 citedByCount "72" @default.
- W2014701474 countsByYear W20147014742012 @default.
- W2014701474 countsByYear W20147014742013 @default.
- W2014701474 countsByYear W20147014742014 @default.
- W2014701474 countsByYear W20147014742015 @default.
- W2014701474 countsByYear W20147014742016 @default.
- W2014701474 countsByYear W20147014742017 @default.
- W2014701474 countsByYear W20147014742018 @default.
- W2014701474 countsByYear W20147014742019 @default.
- W2014701474 countsByYear W20147014742020 @default.
- W2014701474 countsByYear W20147014742021 @default.
- W2014701474 countsByYear W20147014742022 @default.
- W2014701474 countsByYear W20147014742023 @default.
- W2014701474 crossrefType "journal-article" @default.
- W2014701474 hasAuthorship W2014701474A5071941381 @default.
- W2014701474 hasBestOaLocation W20147014742 @default.
- W2014701474 hasConcept C114614502 @default.
- W2014701474 hasConcept C118615104 @default.
- W2014701474 hasConcept C119238805 @default.
- W2014701474 hasConcept C12657307 @default.
- W2014701474 hasConcept C129844170 @default.
- W2014701474 hasConcept C134306372 @default.
- W2014701474 hasConcept C145899342 @default.
- W2014701474 hasConcept C166437778 @default.
- W2014701474 hasConcept C169654258 @default.
- W2014701474 hasConcept C179603306 @default.
- W2014701474 hasConcept C184992742 @default.
- W2014701474 hasConcept C199360897 @default.
- W2014701474 hasConcept C202444582 @default.
- W2014701474 hasConcept C23230895 @default.
- W2014701474 hasConcept C2524010 @default.
- W2014701474 hasConcept C2779765290 @default.
- W2014701474 hasConcept C33923547 @default.
- W2014701474 hasConcept C41008148 @default.
- W2014701474 hasConcept C42747912 @default.
- W2014701474 hasConcept C67536143 @default.
- W2014701474 hasConcept C87670640 @default.
- W2014701474 hasConcept C92788228 @default.
- W2014701474 hasConcept C95136341 @default.
- W2014701474 hasConcept C97137487 @default.
- W2014701474 hasConceptScore W2014701474C114614502 @default.
- W2014701474 hasConceptScore W2014701474C118615104 @default.
- W2014701474 hasConceptScore W2014701474C119238805 @default.
- W2014701474 hasConceptScore W2014701474C12657307 @default.
- W2014701474 hasConceptScore W2014701474C129844170 @default.
- W2014701474 hasConceptScore W2014701474C134306372 @default.
- W2014701474 hasConceptScore W2014701474C145899342 @default.
- W2014701474 hasConceptScore W2014701474C166437778 @default.
- W2014701474 hasConceptScore W2014701474C169654258 @default.
- W2014701474 hasConceptScore W2014701474C179603306 @default.
- W2014701474 hasConceptScore W2014701474C184992742 @default.
- W2014701474 hasConceptScore W2014701474C199360897 @default.
- W2014701474 hasConceptScore W2014701474C202444582 @default.
- W2014701474 hasConceptScore W2014701474C23230895 @default.
- W2014701474 hasConceptScore W2014701474C2524010 @default.
- W2014701474 hasConceptScore W2014701474C2779765290 @default.
- W2014701474 hasConceptScore W2014701474C33923547 @default.
- W2014701474 hasConceptScore W2014701474C41008148 @default.
- W2014701474 hasConceptScore W2014701474C42747912 @default.
- W2014701474 hasConceptScore W2014701474C67536143 @default.
- W2014701474 hasConceptScore W2014701474C87670640 @default.
- W2014701474 hasConceptScore W2014701474C92788228 @default.
- W2014701474 hasConceptScore W2014701474C95136341 @default.
- W2014701474 hasConceptScore W2014701474C97137487 @default.
- W2014701474 hasIssue "4" @default.
- W2014701474 hasLocation W20147014741 @default.
- W2014701474 hasLocation W20147014742 @default.