Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014730874> ?p ?o ?g. }
- W2014730874 endingPage "209" @default.
- W2014730874 startingPage "168" @default.
- W2014730874 abstract "Abstract In this paper we review sequential Monte Carlo (SMC) methods, or particle filters (PF), with special emphasis on its potential applications in financial time series analysis and econometrics. We start with the well‐known normal dynamic linear model, also known as the normal linear state space model, for which sequential state learning is available in closed form via standard Kalman filter and Kalman smoother recursions. Particle filters are then introduced as a set of Monte Carlo schemes that enable Kalman‐type recursions when normality or linearity or both are abandoned. The seminal bootstrap filter (BF) of Gordon, Salmond and Smith (1993) is used to introduce the SMC jargon, potentials and limitations. We also review the literature on parameter learning, an area that started to attract much attention from the particle filter community in recent years. We give particular attention to the Liu–West filter (2001), Storvik filter (2002) and particle learning (PL) of Carvalho, Johannes, Lopes and Polson (2010). We argue that the BF and the auxiliary particle filter (APF) of Pitt and Shephard (1999) define two fundamentally distinct directions within the particle filter literature. We also show that the distinction is more pronounced with parameter learning and argue that PL, which follows the APF direction, is an attractive extension. One of our contributions is to sort out the research from BF to APF (during the 1990s), from APF to now (the 2000s) and from Liu–West filter to Storvik filter to PL. To this end, we provide code in R for all the examples of the paper. Readers are invited to find their own way into this dynamic and active research arena. Copyright © 2010 John Wiley & Sons, Ltd." @default.
- W2014730874 created "2016-06-24" @default.
- W2014730874 creator A5033579806 @default.
- W2014730874 creator A5068729286 @default.
- W2014730874 date "2010-12-17" @default.
- W2014730874 modified "2023-10-09" @default.
- W2014730874 title "Particle filters and Bayesian inference in financial econometrics" @default.
- W2014730874 cites W1483307070 @default.
- W2014730874 cites W1501586228 @default.
- W2014730874 cites W1531283104 @default.
- W2014730874 cites W186039566 @default.
- W2014730874 cites W1974315578 @default.
- W2014730874 cites W1974600023 @default.
- W2014730874 cites W1975413798 @default.
- W2014730874 cites W1975911643 @default.
- W2014730874 cites W1977569390 @default.
- W2014730874 cites W1980792219 @default.
- W2014730874 cites W1983679403 @default.
- W2014730874 cites W1985037657 @default.
- W2014730874 cites W1988827501 @default.
- W2014730874 cites W1994530458 @default.
- W2014730874 cites W2004429102 @default.
- W2014730874 cites W2022023686 @default.
- W2014730874 cites W2022228946 @default.
- W2014730874 cites W2026999222 @default.
- W2014730874 cites W2046357557 @default.
- W2014730874 cites W2048398684 @default.
- W2014730874 cites W2048515311 @default.
- W2014730874 cites W2057487175 @default.
- W2014730874 cites W2064119066 @default.
- W2014730874 cites W2075503097 @default.
- W2014730874 cites W2079672223 @default.
- W2014730874 cites W2082542916 @default.
- W2014730874 cites W2083967480 @default.
- W2014730874 cites W2085738358 @default.
- W2014730874 cites W2088311145 @default.
- W2014730874 cites W2097793382 @default.
- W2014730874 cites W2098613108 @default.
- W2014730874 cites W2099371695 @default.
- W2014730874 cites W2099867508 @default.
- W2014730874 cites W2102430842 @default.
- W2014730874 cites W2106781763 @default.
- W2014730874 cites W2107335183 @default.
- W2014730874 cites W2115722408 @default.
- W2014730874 cites W2121448470 @default.
- W2014730874 cites W2125514280 @default.
- W2014730874 cites W2126736494 @default.
- W2014730874 cites W2127297724 @default.
- W2014730874 cites W2128266748 @default.
- W2014730874 cites W2131598171 @default.
- W2014730874 cites W2137307912 @default.
- W2014730874 cites W2137345842 @default.
- W2014730874 cites W2138680760 @default.
- W2014730874 cites W2146485022 @default.
- W2014730874 cites W2147357149 @default.
- W2014730874 cites W2148613679 @default.
- W2014730874 cites W2149048172 @default.
- W2014730874 cites W2160337655 @default.
- W2014730874 cites W2163587350 @default.
- W2014730874 cites W2165609874 @default.
- W2014730874 cites W2168634963 @default.
- W2014730874 cites W2170621196 @default.
- W2014730874 cites W2277000961 @default.
- W2014730874 cites W2489540272 @default.
- W2014730874 cites W3121154744 @default.
- W2014730874 cites W3124264635 @default.
- W2014730874 cites W4211177544 @default.
- W2014730874 cites W4230472026 @default.
- W2014730874 cites W4231786831 @default.
- W2014730874 cites W4234178258 @default.
- W2014730874 cites W4240810135 @default.
- W2014730874 cites W4252119169 @default.
- W2014730874 cites W4256038730 @default.
- W2014730874 doi "https://doi.org/10.1002/for.1195" @default.
- W2014730874 hasPublicationYear "2010" @default.
- W2014730874 type Work @default.
- W2014730874 sameAs 2014730874 @default.
- W2014730874 citedByCount "113" @default.
- W2014730874 countsByYear W20147308742012 @default.
- W2014730874 countsByYear W20147308742013 @default.
- W2014730874 countsByYear W20147308742014 @default.
- W2014730874 countsByYear W20147308742015 @default.
- W2014730874 countsByYear W20147308742016 @default.
- W2014730874 countsByYear W20147308742017 @default.
- W2014730874 countsByYear W20147308742018 @default.
- W2014730874 countsByYear W20147308742019 @default.
- W2014730874 countsByYear W20147308742020 @default.
- W2014730874 countsByYear W20147308742021 @default.
- W2014730874 countsByYear W20147308742022 @default.
- W2014730874 countsByYear W20147308742023 @default.
- W2014730874 crossrefType "journal-article" @default.
- W2014730874 hasAuthorship W2014730874A5033579806 @default.
- W2014730874 hasAuthorship W2014730874A5068729286 @default.
- W2014730874 hasBestOaLocation W20147308741 @default.
- W2014730874 hasConcept C105795698 @default.
- W2014730874 hasConcept C106131492 @default.
- W2014730874 hasConcept C107673813 @default.
- W2014730874 hasConcept C11413529 @default.