Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014756319> ?p ?o ?g. }
- W2014756319 endingPage "223" @default.
- W2014756319 startingPage "211" @default.
- W2014756319 abstract "Mississippi Valley Type (MVT) Pb–Zn sulfide mineralization is common in Phanerozoic rocks but relatively few MVT deposits have been reported from Paleoproterozoic rocks. This study investigates the genesis of numerous Pb–Zn showings in the ca.2.0 Ga Ramah Group, northern Labrador. Pb–Zn mineralization is hosted within the Reddick Bight Dolomite Member (RBDM), Ramah Group. The RBDM is characterized by a well developed secondary porosity associated with solution dissolution of tepee structures in the dolomite. Mineralization occurs as open fill in this secondary porosity, with dark-brown sphalerite, galena and pyrite with gangue quartz, dolomite, calcite and feldspar. The presence of blocks of mineralized RBDM in thrust faults indicates that mineralization predates propagation of these faults during the Torngat Orogeny from 1.85 to 1.87 Ma. Fluid inclusion analysis of sphalerite has identified H2O–NaCl–CaCl2 + CO2 ± N2 ± CH4 mineralizing fluids with high salinities (up to 19.4 eq. wt.% NaCl + CaCl2) and homogenization temperatures of 104 to 177 °C. The presence of significant volatiles in the mineralizing fluids has been confirmed through quantitative fluid inclusion gas analysis of sphalerite, which has recorded 5.9 mol% CO2. Fluid inclusion data from quartz suggests high temperature (135 to 231 °C), high salinity (up to 20.5 eq. wt.% NaCl + CaCl2) fluids with significant volatile contents (quantitative fluid inclusion gas analysis up to 21.5 mol% CO2). Carbon isotope data show a decrease in δ13C from host dolomite (− 1.3 ± 0.9‰) through pre-ore dolomite (− 4.7 ± 1.5‰) to post-ore calcite (− 5 ± 1.7‰), indicating an influx of isotopically light hydrocarbon-bearing fluids. The δ34S isotopic ratios range from 8.3 to 11.1‰ for early pyrite mineralization, 23.3 to 31.8‰ for late stage pyrite, 16.7 to 32.9‰ for galena and 23.2 to 33.8‰ for sphalerite. The relatively high δ34S values associated with Pb–Zn mineralization, high fluid temperatures (> 175 °C) and presence of CO2 fluids indicate ore deposition was associated with thermochemical sulfate reduction. Pb isotope data from galena separates suggests that the Pb was derived from a relatively non-radiogenic source consistent with the Archean basement rocks of the Nain Province. The Pb–Zn mineralization in the RBDM shares many features with classic MVT deposits including geological setting, mineralogy, fluid characteristics and crustal sources for both metals and sulfur. However, MVT mineralization in the RBDM is unusual when compared with Phanerozoic MVT deposits, with elevated fluid temperatures, high CO2 contents of mineralizing fluids and minimum trapping pressures for fluid inclusions corresponding to mineralization depths of > 4.5 km. Similar characteristics have been described from other Paleoproterozoic MVT deposits (e.g. Pering Zn–Pb deposit, South Africa, Kamarga Pb–Zn deposit, Australia)." @default.
- W2014756319 created "2016-06-24" @default.
- W2014756319 creator A5013232677 @default.
- W2014756319 creator A5040155085 @default.
- W2014756319 creator A5043190249 @default.
- W2014756319 creator A5075178991 @default.
- W2014756319 date "2013-12-01" @default.
- W2014756319 modified "2023-10-02" @default.
- W2014756319 title "Paleoproterozoic Mississippi Valley Type Pb–Zn mineralization in the Ramah Group, Northern Labrador: Stable isotope, fluid inclusion and quantitative fluid inclusion gas analyses" @default.
- W2014756319 cites W1964662694 @default.
- W2014756319 cites W1966815594 @default.
- W2014756319 cites W1968477658 @default.
- W2014756319 cites W1973696505 @default.
- W2014756319 cites W1974924765 @default.
- W2014756319 cites W1980868301 @default.
- W2014756319 cites W1981446681 @default.
- W2014756319 cites W1988627424 @default.
- W2014756319 cites W2002443467 @default.
- W2014756319 cites W2003800418 @default.
- W2014756319 cites W2007105153 @default.
- W2014756319 cites W2008200349 @default.
- W2014756319 cites W2008281306 @default.
- W2014756319 cites W2015273598 @default.
- W2014756319 cites W2031673951 @default.
- W2014756319 cites W2034467201 @default.
- W2014756319 cites W2044537972 @default.
- W2014756319 cites W2044861149 @default.
- W2014756319 cites W2051137378 @default.
- W2014756319 cites W2053678543 @default.
- W2014756319 cites W2058594054 @default.
- W2014756319 cites W2062190518 @default.
- W2014756319 cites W2073250859 @default.
- W2014756319 cites W2074749531 @default.
- W2014756319 cites W2078703472 @default.
- W2014756319 cites W2082623357 @default.
- W2014756319 cites W2088784529 @default.
- W2014756319 cites W2106788916 @default.
- W2014756319 cites W2119766553 @default.
- W2014756319 cites W2131587474 @default.
- W2014756319 cites W2139323869 @default.
- W2014756319 cites W2141124771 @default.
- W2014756319 cites W2143356161 @default.
- W2014756319 cites W2143503987 @default.
- W2014756319 cites W2150925076 @default.
- W2014756319 cites W2152150696 @default.
- W2014756319 cites W2168053637 @default.
- W2014756319 cites W4234065882 @default.
- W2014756319 cites W4239922926 @default.
- W2014756319 doi "https://doi.org/10.1016/j.chemgeo.2013.08.032" @default.
- W2014756319 hasPublicationYear "2013" @default.
- W2014756319 type Work @default.
- W2014756319 sameAs 2014756319 @default.
- W2014756319 citedByCount "17" @default.
- W2014756319 countsByYear W20147563192016 @default.
- W2014756319 countsByYear W20147563192017 @default.
- W2014756319 countsByYear W20147563192018 @default.
- W2014756319 countsByYear W20147563192019 @default.
- W2014756319 countsByYear W20147563192020 @default.
- W2014756319 countsByYear W20147563192021 @default.
- W2014756319 countsByYear W20147563192022 @default.
- W2014756319 countsByYear W20147563192023 @default.
- W2014756319 crossrefType "journal-article" @default.
- W2014756319 hasAuthorship W2014756319A5013232677 @default.
- W2014756319 hasAuthorship W2014756319A5040155085 @default.
- W2014756319 hasAuthorship W2014756319A5043190249 @default.
- W2014756319 hasAuthorship W2014756319A5075178991 @default.
- W2014756319 hasConcept C111696902 @default.
- W2014756319 hasConcept C127313418 @default.
- W2014756319 hasConcept C151730666 @default.
- W2014756319 hasConcept C159390177 @default.
- W2014756319 hasConcept C159750122 @default.
- W2014756319 hasConcept C17409809 @default.
- W2014756319 hasConcept C178790620 @default.
- W2014756319 hasConcept C185592680 @default.
- W2014756319 hasConcept C19320362 @default.
- W2014756319 hasConcept C199289684 @default.
- W2014756319 hasConcept C2776062231 @default.
- W2014756319 hasConcept C2776152364 @default.
- W2014756319 hasConcept C2776268066 @default.
- W2014756319 hasConcept C2777081348 @default.
- W2014756319 hasConcept C2778537970 @default.
- W2014756319 hasConcept C2779870107 @default.
- W2014756319 hasConcept C2780181037 @default.
- W2014756319 hasConcept C2780191791 @default.
- W2014756319 hasConcept C2781139676 @default.
- W2014756319 hasConcept C6494504 @default.
- W2014756319 hasConceptScore W2014756319C111696902 @default.
- W2014756319 hasConceptScore W2014756319C127313418 @default.
- W2014756319 hasConceptScore W2014756319C151730666 @default.
- W2014756319 hasConceptScore W2014756319C159390177 @default.
- W2014756319 hasConceptScore W2014756319C159750122 @default.
- W2014756319 hasConceptScore W2014756319C17409809 @default.
- W2014756319 hasConceptScore W2014756319C178790620 @default.
- W2014756319 hasConceptScore W2014756319C185592680 @default.
- W2014756319 hasConceptScore W2014756319C19320362 @default.
- W2014756319 hasConceptScore W2014756319C199289684 @default.
- W2014756319 hasConceptScore W2014756319C2776062231 @default.
- W2014756319 hasConceptScore W2014756319C2776152364 @default.