Matches in SemOpenAlex for { <https://semopenalex.org/work/W2014762318> ?p ?o ?g. }
- W2014762318 endingPage "208" @default.
- W2014762318 startingPage "195" @default.
- W2014762318 abstract "Abstract Cardiac tissue engineering strategies are based on the development of functional models of heart muscle in vitro . Our research is focused on evaluating the feasibility of different tissue engineering platforms to support the formation of heart muscle. Our previous work was focused on developing three‐dimensional (3D) models of heart muscle using self‐organization strategies and biodegradable hydrogels. To build on this work, our current study describes a third tissue engineering platform using polymer‐based scaffolding technology to engineer functional heart muscle in vitro . Porous scaffolds were fabricated by solubilizing chitosan in dilute glacial acetic acid, transferring the solution to a mold, freezing the mold at −80°C followed by overnight lyophilization. The scaffolds were rehydrated in sodium hydroxide to neutralize the pH, sterilized in 70% ethanol and cellularized using primary cardiac myocytes. Several variables were studied: effect of polymer concentration and chitosan solution volume (i.e., scaffold thickness) on scaffold fabrication, effect of cell number and time in culture on active force generated by cardiomyocyte‐seeded scaffolds and the effect of lysozyme on scaffold degradation. Histology (hematoxylin and eosin) and contractility (active, baseline and specific force, electrical pacing) were evaluated for the cellularized constructs under different conditions. We found that a polymer concentration in the range 1.0–2.5% (w/v) was most suitable for scaffold fabrication while a scaffold thickness of 200 μm was optimal for cardiac cell functionality. Direct injection of the cells on the scaffold did not result in contractile constructs due to low cell retention. Fibrin gel was required to retain the cells within the constructs and resulted in the formation of contractile constructs. We found that lower cell seeding densities, in the range of 1–2 million cells, resulted in the formation of contractile heart muscle, termed s mart m aterial i ntegrated h eart m uscle (SMIHMs). Chitosan concentration of 1–2% (w/v) did not have a significant effect on the active twitch force of SMIHMs. We found that scaffold thickness was an important variable and only the thinnest scaffolds evaluated (200 μm) generated any measurable active twitch force upon electrical stimulation. The maximum active force for SMIHMs was found to be 439.5 μN while the maximum baseline force was found to be 2850 μN, obtained after 11 days in culture. Histological evaluation showed a fairly uniform cell distribution throughout the thickness of the scaffold. We found that lysozyme concentration had a profound effect on scaffold degradation with complete scaffold degradation being achieved in 2 h using a lysozyme concentration of 1 mg/mL. Slower degradation times (in the order of weeks) were achieved by decreasing the lysozyme concentration to 0.01 mg/mL. In this study, we provide a detailed description for the formation of contractile 3D heart muscle utilizing scaffold‐based methods. We demonstrate the effect of several variables on the formation and culture of SMIHMs. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008" @default.
- W2014762318 created "2016-06-24" @default.
- W2014762318 creator A5014957832 @default.
- W2014762318 creator A5056720010 @default.
- W2014762318 date "2007-10-30" @default.
- W2014762318 modified "2023-10-18" @default.
- W2014762318 title "Design and fabrication of heart muscle using scaffold-based tissue engineering" @default.
- W2014762318 cites W1964184143 @default.
- W2014762318 cites W1974179575 @default.
- W2014762318 cites W1974690659 @default.
- W2014762318 cites W1983509147 @default.
- W2014762318 cites W1983975259 @default.
- W2014762318 cites W1988875615 @default.
- W2014762318 cites W1990111895 @default.
- W2014762318 cites W1991753765 @default.
- W2014762318 cites W1995874663 @default.
- W2014762318 cites W1997398888 @default.
- W2014762318 cites W1998002551 @default.
- W2014762318 cites W2001231561 @default.
- W2014762318 cites W2011085226 @default.
- W2014762318 cites W2017041801 @default.
- W2014762318 cites W2023169078 @default.
- W2014762318 cites W2028174136 @default.
- W2014762318 cites W2033858953 @default.
- W2014762318 cites W2034686628 @default.
- W2014762318 cites W2034829127 @default.
- W2014762318 cites W2039667504 @default.
- W2014762318 cites W2042324078 @default.
- W2014762318 cites W2060279594 @default.
- W2014762318 cites W2064184046 @default.
- W2014762318 cites W2074435319 @default.
- W2014762318 cites W2076276686 @default.
- W2014762318 cites W2076351150 @default.
- W2014762318 cites W2078671776 @default.
- W2014762318 cites W2079575768 @default.
- W2014762318 cites W2085776993 @default.
- W2014762318 cites W2088699248 @default.
- W2014762318 cites W2089756144 @default.
- W2014762318 cites W2095330478 @default.
- W2014762318 cites W2096266761 @default.
- W2014762318 cites W2104948210 @default.
- W2014762318 cites W2105127081 @default.
- W2014762318 cites W2111515291 @default.
- W2014762318 cites W2119560400 @default.
- W2014762318 cites W2120949673 @default.
- W2014762318 cites W2129956520 @default.
- W2014762318 cites W2133884616 @default.
- W2014762318 cites W2136521074 @default.
- W2014762318 cites W2139531584 @default.
- W2014762318 cites W2143947516 @default.
- W2014762318 cites W2150647503 @default.
- W2014762318 cites W2156396074 @default.
- W2014762318 cites W2161118621 @default.
- W2014762318 cites W2162327287 @default.
- W2014762318 cites W2164803358 @default.
- W2014762318 cites W2170823241 @default.
- W2014762318 cites W2171313781 @default.
- W2014762318 cites W2411757843 @default.
- W2014762318 cites W32903481 @default.
- W2014762318 cites W4213299864 @default.
- W2014762318 cites W4244240406 @default.
- W2014762318 doi "https://doi.org/10.1002/jbm.a.31642" @default.
- W2014762318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17972281" @default.
- W2014762318 hasPublicationYear "2007" @default.
- W2014762318 type Work @default.
- W2014762318 sameAs 2014762318 @default.
- W2014762318 citedByCount "66" @default.
- W2014762318 countsByYear W20147623182012 @default.
- W2014762318 countsByYear W20147623182013 @default.
- W2014762318 countsByYear W20147623182014 @default.
- W2014762318 countsByYear W20147623182015 @default.
- W2014762318 countsByYear W20147623182016 @default.
- W2014762318 countsByYear W20147623182017 @default.
- W2014762318 countsByYear W20147623182018 @default.
- W2014762318 countsByYear W20147623182020 @default.
- W2014762318 countsByYear W20147623182022 @default.
- W2014762318 countsByYear W20147623182023 @default.
- W2014762318 crossrefType "journal-article" @default.
- W2014762318 hasAuthorship W2014762318A5014957832 @default.
- W2014762318 hasAuthorship W2014762318A5056720010 @default.
- W2014762318 hasBestOaLocation W20147623182 @default.
- W2014762318 hasConcept C105702510 @default.
- W2014762318 hasConcept C126322002 @default.
- W2014762318 hasConcept C127413603 @default.
- W2014762318 hasConcept C136229726 @default.
- W2014762318 hasConcept C192562407 @default.
- W2014762318 hasConcept C207200792 @default.
- W2014762318 hasConcept C2778996579 @default.
- W2014762318 hasConcept C2779732960 @default.
- W2014762318 hasConcept C39133596 @default.
- W2014762318 hasConcept C42360764 @default.
- W2014762318 hasConcept C49892992 @default.
- W2014762318 hasConcept C71924100 @default.
- W2014762318 hasConcept C89429830 @default.
- W2014762318 hasConceptScore W2014762318C105702510 @default.
- W2014762318 hasConceptScore W2014762318C126322002 @default.
- W2014762318 hasConceptScore W2014762318C127413603 @default.
- W2014762318 hasConceptScore W2014762318C136229726 @default.